Строение и функции головного мозга

Автор работы: Пользователь скрыл имя, 30 Апреля 2013 в 11:16, реферат

Описание работы

Головной мозг (encephalon) является высшим органом нервной системы. У взрослого человека головной мозг имеет массу в среднем 1375 г. Индивидуальные вариации массы мозга составляют до 900 до 2000 г. Масса белого вещества в обоих полушариях большого мозга составляет 465 г, а объем - 445 см3. Оно образуется из миелинизированных нервных волокон, среди которых выделяют проекционные, ассоциативные и комиссуральные волокна.

Содержание работы

Строение белого вещества головного мозга
Строение и функции ствола
Анатомические особенности и функции мозжечка
Строение и функции большого мозга
Вертикальная и горизонтальная организация коры
Аналитико-синтетическая деятельность коры больших полушарий
Лимбическая система мозга
Строение белого вещества головного мозга

Файлы: 1 файл

реферат невропатология строение и функции головного мозга.docx

— 73.73 Кб (Скачать файл)

Промежуточный мозг (diencephalon, диенцефалон) - это сложно организованная структура мозга, принимающая участие в реализации различных функций мозга, в том числе как компонент сенсорных, двигательных и вегетативных систем мозга, обеспечивающий целостную деятельность организма.

Промежуточный мозг - это  самая крупная часть ствола мозга. Он развивается из второго мозгового  пузыря (стадия пяти мозговых пузырей). Из нижней стенки этого мозгового  пузыря образуется филогенетически  более старая область - гипоталамус, или подбугорье. Боковые стенки пузыря значительно увеличиваются в объеме и превращаются в таламус, или зрительный бугор, и метаталамус (обе эти структуры представляют собой филогенетически более новые образования). Из верхней стенки пузыря образуются эпиталамус и крыша 3-го желудочка. Таким образом, в состав промежуточного мозга входят структуры мозга, которые располагаются вокруг третьего желудочка. Боковые стенки этого желудочка образованы таламусом, нижняя и нижнебоковая стенки - гипоталамусом (подбугорьем), верхняя стенка - сводом и эпиталамусом, который содержит железу внутренней секреции (эпифиз).

Таламус (зрительный бугор) представляет собой крупное, неправильно-яйцевидной формы скопление серого вещества, разделенного прослойками белового вещества на большое количество ядер - центров восходящих афферентных  путей. С функциональной точки зрения, часть ядер таламуса выполняет сенсорную  функцию, другие ядра являются компонентами двигательной системы, а остальные  являются компонентами вегетативной и  лимбической систем. Среди сенсорных ядер таламуса выделяют три группы ядер - специфические релейные, или переключательные, ядра, или проекционные (доставляют сенсорную информацию в соответствующие проекционные области коры), специфические ассоциативные (обрабатывают сенсорную информацию и доставляют ее в ассоциативные области коры большего мозга) и неспецифические, активирующие проекционные и ассоциативные области коры за счет поступающих сенсорных сигналов. В целом таламус содержит до 120 ядер, которые соединены между собой внутриталамическими волокнами.

Метаталамус представлен коленчатыми телами - медиальными и латеральными. Эти ядра имеют задние части, расположенные в области метаталамуса, и передние части, расположенные в нижнем таламусе. Их нейроны входят в состав слухового (медиальные коленчатые тела) и зрительного (латеральные коленчатые тела) путей. Ядра метаталамуса относятся к сенсорным специфическим релейным, или переключательным, ядрам, а также к сенсорным ассоциативным ядрам.

Эпиталамус (шишковидное тело) контролирует деятельность органа обоняния, принимает участие в тормозном контроле над формированием половой системы организма, регулирует деятельность организма в соответствии с уровнем освещенности окружающей среды.

Все сенсорные потоки, за исключением обонятельного, идут к  таламусу и метаталамусу, а от них к коре больших полушарий. Среди них выделяют четыре основных потока, по которым проводятся импульсы тактильной (передний путь), а также болевой и температурной (латеральный путь) чувствительности к нейронам заднелатерального вентрального ядра. От этих нейронов информация поступает в постцентральную извилину коры. Другие пути несут информацию от слуховых и зрительных рецепторов до нейронов медиального и латерального коленчатого тела. Кроме того, к таламусу и метаталамусу подходят волокна от коры и подкорковых ядер, а от таламуса идут волокна к гипоталамусу. В целом у человека к ядрам таламуса приходят импульсы от зрительной, слуховой, вкусовой, кожной, мышечной систем, от ядер черепномозговых нервов, мозжечка, бледного шара, спинного и продолговатого мозга. При этом половина ядер таламуса дает проекции в ограниченные области коры (специфические, релейные, или переключательные ядра), другая половина дает проекции к подкорковым структурам и направляет коллатерали к коре полушарий головного мозга. Одна часть ядер таламуса имеет прямые двусторонние связи с корой головного мозга, другая часть таких связей не имеет. Кроме того, ядра таламуса имеют важное значение для деятельности лимбической системы и в организации поведенческой деятельности, в том числе условнорефлекторной.

Сенсорные функции таламуса и метаталамуса реализуются за счет поступления всех сенсорных потоков (за исключением потока импульсов от обонятельных рецепторов) в специфические, или релейные, переключательные ядра таламуса. Эти ядра выполняют функцию подкорковых сенсорных центров. Затем информация от них поступает в проекционные области коры, а также в ассоциативные и неспецифические ядра таламуса и метаталамуса. Сенсорная информация от ассоциативных ядер таламуса и метаталамуса поступает к ассоциативным областям коры большого мозга, а информация от неспецифических ядер таламуса достигает проекционных и ассоциативных областей коры, вызывая их диффузную активацию.

В специфических релейных ядрах таламуса переключаются афферентные  импульсы от периферических рецепторов или от первичных воспринимающих ядер нижележащих стволовых структур. Моторные релейные ядра участвуют в  организации движений, в том числе  таких как сосание, жевание, глотание, смех. При этом с участием таламуса двигательные реакции организма  интегрируются с вегетативными  процессами, обеспечивающими эти  движения.

Ассоциативные ядра промежуточного мозга являются филогенетически  более новым приобретением. Афферентные  импульсы к ассоциативным ядрам  поступают главным образом не из периферических отделов сенсорных  систем, а от специфических и других ядер таламуса и метаталамуса, хотя при этом сохраняется топическое распределение информации. Возбуждение от ассоциативных ядер направляется к ассоциативным областям, а также частично и к вторичным проекционным областям коры. Большинство нейронов ассоциативных ядер таламуса и метаталамуса являются мультиполярными, способными выполнять полисенсориые функции. На таких полисенсорных нейронах происходит конвергенция (схождение) возбуждений разных модальностей и формируется интегрированный сигнал, который затем передается в ассоциативную кору большого мозга. Неспецифические сенсорные ядра таламуса морфологически отличаются от других ядер промежуточного мозга тем, что они имеют преимущественно «ретикулярное» строение, т. е. состоят в основном из густой сети нейронов с длинными слабо ветвящимися дендритами. Возбуждение неспецифических ядер вызывает генерацию в коре характерной веретенообразной электрической активности. В целом нейроны неспецифических ядер не приводят к возникновению возбуждения сенсорных нейронов коры большого мозга, а изменяют их чувствительность к специфической афферентации. Неспецифические ядра таламуса оказывают на кору головного мозга модулирующее влияние, регулируют ее функциональное состояние, причем преимущественно тех областей коры, которые в данный момент участвуют в обработке поступающей сенсорной информации. Вот почему деятельность неспецифических ядер таламуса тесно связана с регуляцией ритма «сон - бодрствование», а также с формированием интегративных процессов мозга, обеспечивающих условнорефлекторную деятельность и различные компоненты психической деятельности.

В нейронных сетях всех видов сенсорных ядер промежуточного мозга происходят сложные интегративные  процессы, связанные с переработкой сенсорной информации. Одним из механизмов такой интеграции являются тормозные  процессы, которые проявляются в  наличии длительных тормозных постсинаптических  потенциалов в нейронных структурах таламуса.

К числу надсегментарных функций таламуса относится анализ болевой чувствительности и организация болевых реакций. Считается, что таламус является высшим центром болевой чувствительности - импульсы, идущие к нейронам таламуса от поврежденных участков тела и внутренних органов, вызывают активацию таламических нейронов и субъективные болевые ощущения. У «таламических» животных сильные раздражения сенсорных входов вызывают крик, вегетативные и поведенческие реакции.

Таламус участвует в формировании мотиваций и поведения, направленного  на удовлетворение возникающих потребностей, а также в реализации эмоций как  результат оценки вероятности достижения полезного результата. Участие таламуса в этих реакциях объясняется, в частности, тем, что он является коллектором  почти всех сенсорных потоков, наличие  которых является необходимым условием для реализации указанных функций. В таламусе происходит взаимодействие огромного потока сенсорной информации, из которого наиболее важная информация направляется не только к коре большого мозга, но и к базальным ганглиям, гипоталамусу, гиппокампу, ядрам миндалевидного комплекса. Внутриталамические связи обеспечивают интеграцию сложных двигательных реакций с вегетативными процессами, регулируемыми структурами лимбической системы.

Гипоталамус находится в  основании головного мозга человека и составляет стенки 3-го мозгового  желудочка. Стенки к основанию переходят  в воронку, которая заканчивается  гипофизом (нижней мозговой железой). Гипоталамус  является центральной структурой лимбической системы мозга и выполняет многообразные функции. Часть этих функций относится к гормональным регуляциям, которые осуществляются через гипофиз. Другие функции связаны с регуляцией биологических мотиваций. К ним относят потребление пищи и поддержание массы тела, потребление воды и водно-солевой баланс в организме, регуляцию температуры в зависимости от температуры внешней среды, эмоциональных переживаний, мышечной работы и других факторов, функцию размножения. Она включает у женщин регулирование менструального цикла, вынашивание и рождение ребенка, кормление и многое другое. У мужчин - сперматогенез, половое поведение. Гипоталамус играет также центральную роль в реакции организма на стрессовые воздействия. Несмотря на то что гипоталамус занимает не очень большое место в головном мозге, он имеет в своем составе около четырех десятков ядер. В составе гипоталамуса находятся нейроны, вырабатывающие гормоны или специальные вещества, которые в дальнейшем, действуя на клетки соответствующих эндокринных желез, приводят к выделению или прекращению выделения гормонов (так называемые рилизинг-факторы, от англ. release - выделять). Все эти вещества вырабатываются в нейронах гипоталамуса, затем транспортируются по их аксонам в гипофиз. Ядра гипоталамуса связаны с гипофизом гипоталамо-гипофизарным трактом, который состоит примерно из 200 000 волокон. Свойство нейронов вырабатывать специальные белковые секреты и затем их транспортировать для выброса в кровяное русло называется нейрокринией.

Гипоталамус является частью промежуточного мозга и одновременно эндокринным органом. В определенных его участках осуществляется трансформация  нервных импульсов в эндокринный  процесс. Крупные нейроны переднего  гипоталамуса образуют вазопрессин (супраоптическое ядро) и окситоцин (паравентрикулярное ядро). В других областях гипоталамуса образуются рилизинг-факторы. Одни из этих факторов играют роль гипофизарных стимуляторов (либерины), другие - ингибиторов (статины). В дополнение к тем нейронам, аксоны которых проецируются в гипофиз или в портальную систему гипофиза, другие нейроны этого же ядра отдают аксоны в многие участки головного мозга. Таким образом, один и тот же гипоталамический нейропептид может выполнять роль нейрогормона и медиатора или модулятора синаптической передачи.

Гипоталамус за счет наличия  большого числа разнообразных нейронов, связанных с другими отделами мозга, выполняет разнообразные  функции, среди которых можно  выделить вегетативные, сенсорные, двигательные и поведенческие (или интегративные). Очевидно, что вегетативная функция  гипоталамуса как высшего вегетативного  центра является базовой, служащей основой  для реализации других перечисленных  выше функций.

Анатомические особенности и функции мозжечка

Мозжечок состоит из червя  и полушарий. Их серое вещество, расположенное  в поверхностном слое, образует кору мозжечка, а скопление серого вещества в глубине мозжечка - ядра мозжечка. Белое вещество, или мозговое тело, залегает в толще мозжечка и содержит три группы волокон - проекционные (соединяют  мозжечок со спинным мозгом, стволом, базальными ядрами, таламусом и корой  больших полушарий), ассоциативные (соединяют различные извилины в  пределах одного полушария мозжечка) и комиссуральные (соединяют одно полушарие с другим).

Проекционные волокна  проходят в составе трех ножек  мозжечка - верхних, средних и нижних. В верхних ножках проходят пути от мозжечка к среднему мозгу, таламусу и хвостатому ядру, а также от спинного мозга к мозжечку. Средние  ножки содержат мостомозжечковые волокна, или пути, которые несут информацию от ядер моста. В нижних ножках мозжечка проходят афферентные, или восходящие, волокна от спинного мозга и от ствола мозга. Кроме того, в нижних ножках проходят нисходящие, или эфферентные, пути мозжечка к вестибулярным ядрам  ствола мозга.

Принцип работы мозжечка заключается  в поступлении обширной информации, в том числе от рецепторов вестибулярного аппарата, мышечных, сухожильных и  суставных рецепторов, кожных рецепторов, фоторецепторов и фонорецепторов, а также от нейронов коры больших полушарий. Эта информация обрабатывается в коре мозжечка и передается на ядра мозжечка, которые управляют деятельностью красного ядра, вестибулярных ядер и ретикулярной формации. Кроме того, информация идет в кору больших полушарий, где используется для составления точных программ выполнения сложных движений.

К мозжечку поступают три  вида афферентной информации:

1) информация от рецепторов  вестибулярного аппарата (первичные  вестибулярные афференты), от вестибулярных ядер, красного ядра и ретикулярной формации ствола мозга, а также от чувствительных ядер тройничного, языкоглоточного и блуждающего нервов;

2) информация от мышечных  веретен, сухожильных и суставных  рецепторов;

3) информация от ассоциативных  и двигательной областей коры  больших полушарий.

Эфферентные связи коры и  ядер мозжечка, подобно афферентным  связям, также многочисленны. В экспериментах  показано, что при стимуляции мозжечка повышается возбудимость двигательной зоны коры больших полушарий, контролирующих пирамидный путь и экстрапирамидные пути. Показано также, что мозжечок может оказывать облегчающие  и тормозящие влияния на двигательную, ассоциативную и другие области  коры через ретикулярную формацию мозгового  ствола и неспецифические ядра таламуса.

Функции мозжечка. Согласно общепринятому мнению, основное значение мозжечка состоит в том, что он корректирует и дополняет деятельность других двигательных центров. Основные функции мозжечка - регуляция позы и мышечного тонуса, координация  медленных движений и рефлексов  поддержания позы и коррекция  быстрых целенаправленных движений, формируемых двигательной корой  больших полушарий. При этом считается, что каждая область мозжечка выполняет  определенные функции в процессах  координации мышечной деятельности.

Строение и функции  большого мозга

Большой мозг (cerebrum) состоит из двух полушарий (правого и левого). Каждое полушарие большого мозга состоит из трех филогенетически и функционально различных систем: 1) обонятельного мозга; 2) базальных ядер, или подкорки; 3) коры большого мозга (cortex, кортекс), или плаща (pallium, паллиум). Нередко в литературе используются такие понятия, как передний мозг и конечный мозг. Передний мозг (prosencepnalony) развивается из конечного отдела нервной трубки и включает промежуточный и конечный мозг. Конечный мозг (telencephalon) развивается из переднего мозгового пузыря и состоит из коры большого мозга, мозолистого тела, полосатого тела и обонятельного мозга.

Базальные ганглии, или базальные  ядра, - это скопление серого вещества мозга в толще белого вещества полушарий большого мозга (преимущественно  в лобных долях). Их называют подкорковыми ядрами мозга. К базальным ядрам  в каждом полушарии относят несколько  ядер (бледный шар, полосатое тело и др.), которые регулируют двигательные автоматизмы, а также обеспечивают нормальное распределение тонуса и  адекватную динамику движения. Функционально  к базальным ядрам относят  черную субстанцию среднего мозга. Миндалевидное  тело находится в толще височной доли и также относится к базальным  ганглиям.

Информация о работе Строение и функции головного мозга