Автор работы: Пользователь скрыл имя, 11 Сентября 2013 в 20:27, контрольная работа
Многие, наверное, слышали такие слова как ГМО, трансгенные организмы или просто трансгены. Мы постараемся разобраться, что же это такое и как их получают. Сейчас ученые способны переносить и встраивать гены из геномов одних организмов в геномы любых других организмов, относящихся ко всем царствам живого. Такие организмы со встроенными чужеродными генами и называют генетически модифицированными организмами — ГМО или трансгенными организмами. К настоящему времени уже создано много таких изменённых организмов. Это и бактерии, производящие инсулин, и другие необходимые человеку соединения, и животные, дающие, например, молоко со свойствами грудного женского молока, а также множество растений, которые или устойчивы к каким-то соединениям, например, к гербицидам, или сами вырабатывают какие-то полезные человеку белки, например, вакцины или антитела. ГМО создают с помощью генно-инженерных технологий или генной инженерии. (1)
Введение.
Наследственность на заказ.
Создание трансгенного организма. Основы генной инженерии.
История генной инженерии.
Генетически модифицированные организмы. Трансгенные растения и животные.
Свойства трансгенных растений.
Трансгенные вакцины.
Генная терапия.
Заключение.
Тема: «Трансгенные организмы и их применение в фармации и медицине»
Выполнила: студентка Атыгаева Зарина
Факультета Общая медицина, 143 группа
Оценка:
Введение
Многие, наверное, слышали такие слова как ГМО, трансгенные организмы или просто трансгены. Мы постараемся разобраться, что же это такое и как их получают. Сейчас ученые способны переносить и встраивать гены из геномов одних организмов в геномы любых других организмов, относящихся ко всем царствам живого. Такие организмы со встроенными чужеродными генами и называют генетически модифицированными организмами — ГМО или трансгенными организмами. К настоящему времени уже создано много таких изменённых организмов. Это и бактерии, производящие инсулин, и другие необходимые человеку соединения, и животные, дающие, например, молоко со свойствами грудного женского молока, а также множество растений, которые или устойчивы к каким-то соединениям, например, к гербицидам, или сами вырабатывают какие-то полезные человеку белки, например, вакцины или антитела. ГМО создают с помощью генно-инженерных технологий или генной инженерии. (1)
Наследственность на заказ
Сходство представителей одного биологического вида между собой объясняется тем, что все они имеют уникальный набор генов, которые определяют врожденные свойства организма: разрез глаз и цвет кожи, количество зубов, тип корневой системы и даже звуки брачной песни. Абсолютно все клетки несут этот набор, вот только участки заложенной информации в них используются разные. Поэтому-то клетки кожи и отличаются от клеток желудка не только внешне, но и функционально.
Этот
набор записан в виде
Итак, гены
разных видов — это просто
разные тексты на одном и
том же языке. Если ген одного
организма вдруг попадет
Создание трансгенного организма. Основы генной инженерии.
Как только
подтвердилась вышеописанная «
Впрочем,
конечно, между простой
Создание трансгенного организма происходит в несколько этапов. Для начала нужно с совершенной точностью определить «донорский» ген, который заставит новый организм выполнять несвойственные ему до момента «операции» функции. Скажем, нас интересует синтез какого-нибудь вещества. Если это белок — нужно выделить и очистить его самого. Если же это сравнительно простое вещество (скажем, глутамат, придающий супам быстрого приготовления их неповторимый устойчивый вкус) — нужно выделить и очистить фермент, который его образует. Затем следует определить его аминокислотную последовательность, «вычислить» по ней последовательность нуклеотидов в соответствующем гене (это опять-таки непросто: одну аминокислоту могут кодировать несколько сочетаний нуклеотидов) и, наконец, найти нужный ген. Теперь его надо вырезать и встроить в другую молекулу ДНК, способную обеспечить жизнеспособность «переселенца» в чужеродном окружении. При положительном результате подобных манипуляций в клетке начинает синтезироваться новый белок, что и приводит к появлению у организма новых свойств. Вот, собственно, и все основы генной инженерии.
Впрочем,
множество генов было
История генной инженерии
1944 — Эйвери, Мак-Леод и МакКарти показали, что «вещество наследственности» — это ДНК
1953 — Джеймс Уотсон и Фрэнсис Крик определили структуру молекулы ДНК — двойную спираль
1961—1966 — расшифрован генетический
код — принцип записи в ДНК
и РНК последовательности
1970 — выделена первая рестриктаза
1973 — Гобинд Корана синтезировал полноразмерный ген; Герберт Бойер и Стэнли Коэн предложили стратегию создания рекомбинантных ДНК
1976—1977 — разработаны методы
определения нуклеотидных
1978 — фирма Genentech выпустила рекомбинантный инсулин, производимый человеческим геном, введенным в бактериальную клетку
1980 — Верховный суд
США вынес вердикт о
1981 — поступили в продажу
автоматические синтезаторы
1983 — для трансформации растений применены гибридные Ti-плазмиды; компания Monsanto начала создание трансгенных растений
1985—1988 — разработан метод полимеразной цепной реакции (ПЦР)
1988 — в США утвержден план испытаний генной терапии с использованием человеческих клеток; официально начаты работы над всемирным проектом «Геном человека»
1994 — получено первое
разрешение на возделывание
1996 — началось массовое выращивание трансгенных растений
1998 — Европейский союз ввел мораторий на регистрацию новых ГМ-культур, действовавший до 2002 года
2000 — принят Картахенский протокол по биобезопасности (вступил в силу в 2003 году), установивший наиболее общие международные нормы обращения с трансгенными организмами
2003 — опубликована
2006 — ученые, работающие
над расшифровкой генома
Генетически модифицированные организмы. Трансгенные растения и животные.
Сегодня
в разных лабораториях мира
«собрано» уже огромное
Разумеется, для того, чтобы стать средством научного поиска, ГМ-организму не обязательно светиться. Более того, самый мощный вклад в исследования последних лет внесли существа, отличающиеся от нормальных сородичей не лишними, а, наоборот, недостающими генами. Технологии генной инженерии позволяют не только пересадить зародышу чужой ген, но и избирательно вырезать или лишить активности его собственный, причем вполне определенный. Такие животные получили название «нокаутных». Понятно, что метод «нокаутирования» позволяет прямо выяснять функции выбитой «детали», ее роль в тех или иных физиологических процессах. Особенным успехом у современных экспериментаторов пользуются «нокаутные» мыши, сыгравшие в функциональной генетике примерно ту же роль, что мушки-дрозофилы в генетике классической. Из всех быстро размножающихся и хорошо изученных животных мышь ближе всего к человеку: подавляющее большинство наших генов есть и у нее. Так вот, «нокаутные» мыши позволили нащупать молекулярные механизмы огромного числа нормальных и патологических процессов — от запоминания и поведения до канцерогенеза и старения. Последовательные «отключения» одного гена за другим позволили ученым поставить вопрос о «минимальном геноме»: каков критический набор генов, позволяющий тому или иному существу жить и выполнять свои функции?
Некоторые специалисты, правда, критиковали исследования на «нокаутных» животных, справедливо напоминая, что организм — система гибкая. Развиваясь без «штатного» гена, он может обеспечить необходимые ему функции другими путями, а мы, наблюдая результат, сочтем, что данный ген для данной функции не нужен. Ответом на эти замечания стало усовершенствование техники «нокаутирования»: теперь она позволяет выключать исследуемый участок молекулы ДНК уже у взрослого организма, причем временно или только в определенных тканях. Впрочем, такие организмы, строго говоря, уже нельзя назвать трансгенными.
«Ножницами»,
разрезающими нить ДНК по
Чтобы
доставить нужный ген внутрь
чужой клетки, обычно используют
природных переносчиков
Особенно
удобны так называемые Ti-
Информация о работе Трансгенные организмы и их применение в фармации и медицине