Автор работы: Пользователь скрыл имя, 27 Ноября 2013 в 19:05, контрольная работа
Широта и многогранность проблемы рационального использования земельных ресурсов, ее исторические корни и взаимосвязь с другими проблемами социально-экономического развития государства формируют неоднозначный подход к определению содержания землеустройства. Это вполне закономерно, так как землеустройство, с одной стороны, рассматривается как социально-экономическое явление, ход которого диктуется общими потребностями народного хозяйства, а с другой стороны — как система государственных мероприятий, состав и очередность которых диктуется конкретными задачами развития земельных отношений на современном этапе. Действующее земельное законодательство регламентирует содержание землеустройства в качестве системы государственных мероприятий.
1. Развитие землеустройства на современном этапе.
2. Методика планирования урожайности сельскохозяйственных культур в проектах землеустройства.
3. Первые научные исследования в области землемерного дела.
4. Классификация проектов землеустройства.
5. Задачи землеустройства.
6.Задача 1.
7. Задача 5.
8. задача 9.
9. Задача 22
При землеустроительном проектировании данные методы применяют в ходе подготовительных работ к составлению проектов землеустройства при изучении экономики землеустраиваемых предприятий, состояния и использования земель, а также при разработке нормативов проектирования и экономического обоснования проектов.
В связи с появлением геоинформационных систем (ГИС) и земельно-информационных систем (ЗИС), компьютерной техники и программного обеспечения, развитием информационной базы землеустроительных данных система землеустроительных методов стала трансформироваться в технологию автоматизированного землеустроительного проектирования с использованием ЭВМ.
Стали создавать Автоматизированные
рабочие места земле-устроителей-
Как научная дисциплина землеустроительное проектирование использует классические методы научного познания: научной абстракции, индукции и дедукции, анализа и синтеза, аналогии, монографических исследований.
В ряде случаев для выработки
методов землеустройства
3. Первые научные исследования в области землемерного дела.
Название "геодезия" ("землеразделение") указывают на те первоначальные практические задачи, которые обусловили возникновение этой науки, но уже не характеризует современного многостороннего содержания геодезии и не раскрывает сущности ее научных проблем и практических задач, связанных с разнообразными потребностями человеческой деятельности.
Геодезия возникла в глубокой древности, когда появилась необходимость землеизмерения и изучения земной поверхности для хозяйственных целей. В Древнем Египте еще в 18 в. до н.э. существовало руководство по решению арифметических и геометрических задач, связанных с землеизмерением и определением площадей земельных участков. Геодезия развивалась в тесной связи с задачами составления планов и карт земной поверхности. Планами и картами отдельных местностей и даже больших стран также пользовались в глубокой древности. Имеются сведения, что в Китае уже около 10 в. до н.э. существовало особое учреждение для топография, съёмок страны. В 7 в. до н.э. в Вавилоне и Ассирии на глиняных дощечках составлялись общегеографические и специальные карты, на которых давались сведения также и экономического характера.
Методы геодезии уже на ранней ступени её развития получили применение при решении различных инженерных задач. В б в. до н.э. существовали такие инженерные сооружения, как канал между Нилом и Красным морем, оросительные системы в долине Нила и т.д. Эти сооружения не могли быть осуществлены без соответствующих геодезических измерений, явившихся началом инженерной геодезия.
В 6 в. до н.э. появились предположения о шарообразности Земли, а в 4 в. до н.э. были высказаны и некоторые из известных нам доказательств, что Земля имеет форму шара. В это время геодезия получила своё современное название и стала выделяться в самостоятельную науку о методах измерения на земной поверхности и определения размеров земного шара. Знание размеров Земли было необходимо для составления географических карт, в которых нуждались торговля, мореплавание, военное дело и вообще развивающаяся хозяйственная и культурная жизнь народов.
Первое в истории науки определение размеров Земли, как шара, было произведено в Древнем Египте греч. учёным Эратосфеном в 3 в. до н.э. Оно было основано на правильном геометрическом методе, который получил название градусных измерений. В связи с постановкой и решением задачи определения вида и размеров Земли, как планеты, геодезия вступила в тесный контакт с астрономией, возникшей задолго до этого из практической необходимости измерения времени и предсказания смены времён года. Астрономы и математики еще во 2 в. до н.э. установили понятия о географической широте и долготе места, разработали первые картографические проекции, ввели сетку меридианов и параллелей на картах, предложили первые методы определения взаимного положения точек земной поверхности из астрономических наблюдений и тем самым создали один из методов картографических работ.
Применение геодезия и выполнение геодезия, работ в России относится к глубокой древности. Еще в 1068 по приказанию князя Глеба было измерено расстояние между городами Тамань и Керчь по льду Керченского залива. В сборнике законов Древней Руси "Русская Правда", относящемся к 11 - 12 вв., содержатся постановления о земельных границах, которые устанавливались путём измерений на местности. Одна из первых карт Московского государства, т. н. "Большой чертёж", время составления которой неизвестно (оригинал и сделанная в 1627 копия не сохранились), основывалась на маршрутных съёмках и опросных данных. В царствование Ивана IV служилые люди были обязаны производить съёмку и составлять описание тех местностей, куда они направлялись. Таким образом был собран большой описательный и картографический материал для создания карт Московского государства и прилегающих к нему территорий.
Развитие современной геодезии и методов геодезических работ началось только в 17 в. В начале 17 в. была изобретена зрительная труба, которая имела большое значение для геодезических работ. В то же время была изобретена триангуляция, превратившаяся впоследствии в один из основных методов определения опорных геодезических пунктов для топографических съёмок. Появление угломерного инструмента, называемого теодолитом, и сочетание его со зрительной трубой, снабжённой сеткой нитей, сильно повысило точность угловых измерений, ставших важнейшей частью работ по триангуляции. В середине 17 в. был изобретён барометр, явившийся одним из инструментов для определения высоты точек земной поверхности. Были разработаны графические методы топографической съёмки, упростившие задачи составления топографических карт. На рубеже 16 и 17 вв. было установлено, что на Земле действуют силы, которые позднее получили название сил тяготения, или гравитационных сил. Во второй половине 17 в. была открыта центробежная сила и обнаружена зависимость периода колебания физического маятника от его длины и ускорения силы тяжести. К этому же времени относится установление фактов изменения длины секундного маятника с изменением широты места. Обобщение и объяснение этих явлений и фактов привело к открытию закона всемирного тяготения и обоснованию взгляда о сфероидичности Земли, т.е. сплюснутости её в направлении полюсов.
Исходя из теории тяготения
и некоторых гипотез о
К середине 18 в. были произведены первые исследования по теории фигуры Земли. Французский математик А. Клеро вывел линейное дифференциальное уравнение 2-го порядка, связывающее плотность и сжатие внутренних сфероидальных слоев Земли, и разъяснил противоречие между указанными выше теоретическими выводами сжатия земного эллипсоида. Это дифференциальное уравнение, впоследствии надлежащим образом уточнённое, служит теперь для определения сжатия Земли на основании данных о её внутреннем строении. Эти исследования привели к открытию закона распределения силы тяжести на поверхности земного эллипсоида и установили связь между сжатием земного эллипсоида и распределением силы тяжести на его поверхности, т.е. были созданы теоретические основы определения сжатия Земли по измерениям силы тяжести.
Эпоха открытия закона всемирного тяготения и указанных геодезических экспедиций явилась эпохой окончательного становления геодезия как самостоятельной науки о фигуре Земли и методах её изучения.
Развитие геодезии и геодезических работ в России усилилось при Петре I. В 1701 он основал в Москве одну из первых в России астрономических обсерваторий и Школу математических и навигационных наук, готовившую астрономов, геодезистов, географов, гидрографов и навигаторов. В 1715 такая же школа, названная Морской академией, была открыта в Петербурге. В 1703 была издана "Арифметика" Л.Ф. Магницкого, в которой содержались основные сведения по геодезии и астрономии.
Первые топографические
съёмки в России были начаты в 1696 на
р. Дон, а в 1715 на р. Иртыш. В 1718-1722 геодезисты
И.М. Евреинов и Ф.Ф. Лужин выполнили
топографические и
На рубеже 18 и 19 вв. возросли запросы и требования на топографические карты. Войны того периода показали значение и ценность топографических карт для военного дела. Во многих странах Европы были созданы военно-географические институты и военно-топографические управления, производившие основные астрономо-геодезические и съёмочные работы на территории своих государств и колоний. При выполнении этих работ совершенствовались методы и инструменты геодезических измерений. В 1-й половине 19 в. стал применяться теодолит с микроскопами-микрометрами, сильно повысивший точность измерения углов, и были сконструированы различные типы жезловых базисных приборов. К этому же времени относится разработка современных методов измерения углов в триангуляции.
В 1797 в России
при Генеральном штабе армии
было организовано Депо карт, которое
в 1812 было преобразовано в Военно-
В 1785 франц. учёный А.М. Лежандр ввёл понятие о потенциальной функции, положившее начало развитию теории потенциала и имеющее большое значение для геодезии, особенно в вопросах изучения фигуры Земли. В 1792-99 во Франции П. Мешен и Ж. Деламбр заново измерили дугу меридиана от Дюнкерка до Барселоны для установления длины метра как 1/10000000 доли четверти земного меридиана. По результатам этой работы был сделан первый достаточно достоверный вывод размеров земного эллипсоида. В начале 19 в. появилась теория ошибок и принцип наименьших квадратов, лежащий в основе современных методов обработки геодезических измерений. С начала 19 в. потребности геодезии вызвали развитие теории поверхностей и, в частности, теории отображения одной поверхности на другой.
В 1816 под руководством русского военного геодезиста К.И. Теннера было начато построение триангуляции в западных пограничных губерниях России, а в прибалтийских губерниях России - градусное измерение по меридиану, которое возглавлялось известным астрономом В.Я. Струве. Эти работы имели очень большое значение в развитии теории геодезия и методов геодезических работ. Теннер впервые ввёл деление триангуляции на классы и наметил научные принципы её построения. Он сконструировал один из типов базисного прибора, который позволял измерять базисы с точностью до 1/300000. Струве разработал названный его именем способ измерения углов триангуляции, исследовал влияние рефракции на результаты измерения углов и создал наилучший для того времени базисный прибор, применявшийся в течение всего 19 в. Работы Струве и Теннера завершились в 1855. Было закончено измерение огромной дуги меридиана, простирающейся от устьев Дуная до берегов Ледовитого океана и имеющей протяжённость более 25° по широте. Это градусное измерение, называемое "дугой Струве", которое являлось выдающейся работой по геодезии в 19 в. и для того времени имело наивысшую точность, оказало решающее влияние на развитие теорий и методов геодезических и астрономических работ во всём мире. Оно неоднократно использовалось и до сих пор не потеряло значения для определения размеров Земли.