Автор работы: Пользователь скрыл имя, 13 Марта 2014 в 14:56, контрольная работа
Исследование операций - это применение количественных методов для отыскания оптимального решения. То есть, исследование операций представляет собой составную часть операционного менеджмента
Предмет исследования операций — это системы организационного управления (организации), которые состоят из большого числа взаимодействующих между собой подразделений, причем интересы подразделений не всегда согласуются между собой и могут быть противоположными.
Целью исследования операций является количественное обоснование принимаемых решений по управлению организациями. Решение, которое оказывается наиболее выгодным для всей организации, называется оптимальным, а решение, наиболее выгодное одному или нескольким подразделениям, будет субоптимальным.
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ
БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО
ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ
РОССИЙСКОЙ ФЕДЕРАЦИИ
ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ
Кафедра Экономика, менеджмент и маркетинг
КОНТРОЛЬНАЯ РАБОТА
по дисциплине Производственный менеджмент
Тема Исследование операций в производственном менеджменте (вариант 12)
Курс V группа № 3C2-МО501
Преподаватель Шедько Ю.Н.
(Ф.И.О.)
Москва – 2014 г.
Исследование операций - это применение количественных методов для отыскания оптимального решения. То есть, исследование операций представляет собой составную часть операционного менеджмента
Предмет исследования операций — это системы организационного управления (организации), которые состоят из большого числа взаимодействующих между собой подразделений, причем интересы подразделений не всегда согласуются между собой и могут быть противоположными.
Целью исследования операций является количественное обоснование принимаемых решений по управлению организациями. Решение, которое оказывается наиболее выгодным для всей организации, называется оптимальным, а решение, наиболее выгодное одному или нескольким подразделениям, будет субоптимальным.
Производственный отдел стремится выпускать как можно больше продукции при наименьших затратах. Поэтому он заинтересован в возможно более длительном и непрерывном производстве, т. е. в выпуске изделий большими партиями, ибо такое производство снижает затраты на переналадку оборудования, а следовательно и общие производственные затраты. Однако выпуск изделий большими партиями требует создания больших объемов запасов, материалов, комплектующих изделий и т. д. Отдел сбыта также заинтересован в больших запасах готовой продукции, чтобы удовлетворить любые запросы потребителя в любой момент времени. Заключая каждый контракт, отдел сбыта, стремясь продать как можно больше продукции, должен предлагать потребителю максимально широкую номенклатуру изделий. Вследствие этого между производственным отделом и отделом сбыта часто возникает конфликт по поводу номенклатуры изделий. При этом отдел сбыта настаивает на включении в план многих изделий, выпускаемых в небольших количествах даже тогда, когда они не приносят большой прибыли, а производственный отдел требует исключения таких изделий из номенклатуры продукции. Финансовый отдел, стремясь минимизировать объем капитала, необходимого для функционирования предприятия, пытается уменьшить количество «связанных» оборотных средств. Поэтому он заинтересован в уменьшении запасов до минимума. Как видим, требования к размерам запасов у разных подразделений организации оказываются различными. Возникает вопрос, какая стратегия в отношении запасов будет наиболее благоприятной для всей организации. Это типичная задача организационного управления. Она связана с проблемой оптимизации функционирования системы в целом и затрагивает противоречивые интересы ее подразделений.
Основные особенности исследования операций.
1. Системный подход к анализу поставленной проблемы. Системный подход, или системный анализ, является основным методологическим принципом исследования операций, который состоит в следующем. Любая задача, какой бы частной она не казалась на первый взгляд, рассматривается с точки зрения ее влияния на критерий функционирования всей системы. Выше системный подход был проиллюстрирован на примере задачи управления запасами.
2. Для исследования операций характерно, что при решении каждой проблемы возникают все новые и новые задачи. Поэтому если сначала ставятся узкие, ограниченные цели, применение операционных методов не эффективно. Наибольший эффект может быть достигнут только при непрерывном исследовании, обеспечивающем преемственность в переходе от одной задачи к другой.
3. Одной
из существенных особенностей
исследования операций
4. Особенность
операционных исследований
Каждое операционное исследование проходит последовательно следующие основные этапы:
1)постановка задачи,
2)построение математической модели,
3)нахождение решения,
4)проверка и корректировка модели,
5)реализация
найденного решения на
Для построения математической модели важно:
1) иметь строгое представление о цели функционирования исследуемой системы.
2) установить, значениями каких характеристик (переменных) исследуемой системы можно варьировать, т.е. выявить множество так называемых управляемых переменных.
3) располагать информацией об ограничениях, которые определяют область допустимых значений управляемых переменных.
Заметим, что полученное с помощью некоторой модели конкретное оптимальное решение является наилучшим только в рамках использования именно этой модели, т.е. только тогда, когда выбранный критерий оптимизации полностью адекватен цели. В практических ситуациях этого достичь не просто.
В основе построения моделей лежит допущение о том, что все переменные, ограничения, функция цели количественно измеримы. Поэтому если Xj, j=1,...,n, представляют собой n управляемых переменных и условия функционирования исследуемой системы характеризуются m ограничениями, то математическая модель может быть записана в следующем виде:
Z
= f (X1, X2, ..., Xn)
opt {max (min)}
gi
(X1, X2, ..., Xn) £ (=) bi , i = 1, ..., m
X1,
X2, ..., Xn ³ 0 .
Соотношение (1) называется целевой функцией, а соотношения (2-3) – ограничениями модели. Ограничения (3) называются условиями неотрицательности. В большинстве случаев такое требование вполне естественно. Термин "оптимизация" обычно используется для обозначения процессов максимизации либо минимизации.
Теория и методы решения задач типа (1-3) носят название – математическое программирование. Традиционно в математическом программировании выделяют линейное программирование (целевая функция и ограничения являются линейными функциями). Это наиболее разработанный раздел математического программирования.
После построения математической модели осуществляется решение сформулированной задачи, которое получают апробированными оптимизационными методами. Большинство алгоритмов, разработанных к настоящему времени, не позволяет получить решение задачи в аналитической форме. Как правило, оно находится путем осуществления ряда повторяющихся вычислительных процедур - итераций. Основная особенность итерационного процесса состоит в том, что на каждом шаге существует перспектива получения решения, более близкого к оптимуму, чем текущее решение. Кроме того, размерность большинства реальных задач, решаемых с помощью математических моделей, настолько велика, что бессмысленно пытаться получить их решение, осуществляя вычисления вручную. Все это обусловливает необходимость применения ЭВМ.
Математическая модель является прекрасным средством получения ответов на широкий круг самых разнообразных вопросов, возникающих при принятии оптимальных решений.
На этапе постановки задачи часто производится анализ с целью ответа на вопросы: ”что будет, если..?” и/или “что надо, чтобы..?”. Кроме анализа, выполняемого на этапе постановки задачи, мощным средством, помогающим принять решение, является анализ полученного оптимального решения. Эту часть исследования обычно называют анализом модели на чувствительность. Он необходим, например, в тех случаях, когда некоторые характеристики исследуемой системы не поддаются точной оценке. В такой ситуации весьма важно исследовать возможные изменения оптимума в зависимости от небольших изменений соответствующих параметров системы.
Задача линейного программирования является достаточно распространенной задачей принятия оптимальных решений в производственном менеджменте. Общая задача линейного программирования (ОЗЛП) математически может быть сформулирована следующим образом:
Найти значения переменных X1, X2, ..., Xn, максимизирующих (минимизирующих) линейную форму
F ( ) = c1 * X1 + c2 * X2 + ... + cn * Xn (1)
при условиях
, (2-3)
xj
0, j = 1,...,p , (p
n) .
Соотношения (2-3) называются функциональными ограничениями, а (4) – прямыми.
Пример. Металлургическому заводу требуется уголь с содержанием фосфора не более 0.03% и с долей зольных примесей не более 3.25%. Завод закупает три сорта угля А, В, С с известным содержанием примесей. В какой пропорции нужно смешивать исходные продукты А, В, С, чтобы смесь удовлетворяла ограничениям на содержание примесей и имела минимальную цену?
Содержание примесей и цена исходных продуктов приведены в табл. 1.
Таблица 1
Сорт |
Содержание (%) |
Цена | |
угля |
фосфора |
золы |
1 т, руб. |
А В С |
0.06 0.04 0.02 |
2.0 4.0 3.0 |
30 30 45 |
Построим математическую модель.
Обозначим:
Х1 – количество угля сорта А в тонне смеси;
Х2 – количество угля сорта В в тонне смеси, (переменные);
Х3 – количество угля сорта С в тонне смеси.
F( ) = 30×X1 + 30×X2 + 45×X3 - стоимость 1 т. смеси (целевая функция),
0.06×Х1 + 0.04×Х2 + 0.02×Х3 0.03 (%) - ограничение на содержание фосфора в смеси,
2×Х1 + 4×Х2+ 3×Х3 3.25 (%) - ограничение на содержание зольных примесей,
Х1+ Х2 + Х3 = 1 (т.) - ограничение на состав 1 т. смеси.
Окончательно, математическая модель имеет вид.
Определить количество угля сортов А, В, С (Х1, Х2, Х3) в тонне смеси, при которых достигается F( ) = 30×X1 + 30×X2 + 45×X3 при ограничениях 0.06×Х1 + 0.04×Х2 + 0.02×Х3 0.03
2×Х1 + 4×Х2 + 3×Х3 3.25
Х1+ Х2 + Х3 = 1
Х1,X2,X3 0.
Задачи производственного менеджмента во многих случаях оказываются ассоциированными с задачами распределительного типа, т.е. с задачами, в которых требуется распределить ограниченные ресурсы по нескольким видам производственной деятельности.
Рассмотрим следующую ситуацию, получившую название задачи производственного планирования. Пусть из технологических соображений известен перечень продуктов, которые предприятие может производить без дополнительных капиталовложений. Кроме того, известны вид и количество ресурсов отпущенных предприятию для производственного потребления и структура материальных затрат и доходов. В этих условиях перед предприятием стоит задача выбора плана производства, обеспечивающего получение максимальной прибыли.
Перейдем к построению математической модели рассмотренной ситуации. Будем считать, что предприятие может производить n различных продуктов (j = 1, ..., n). Количество j-го продукта выпускаемого по плану, обозначим через xj. В этом случае план производства может быть описан с помощью вектора = (X1, X2, ..., Xn). Предположим, что предприятие располагает для организации производственного процесса m видами различных ресурсов (i = 1, ..., m). Количество ресурса i-го вида, отпущенное предприятию для потребления обозначим через bi. Количество ресурса i-го вида, расходуемое предприятием на производство единицы j-го продукта, обозначим через aij, а прибыль, от производства единицы продукции j-го вида через cj.
Тогда, в принятых нами обозначениях, задача выбора плана производства, обеспечивающего получение максимальной прибыли может быть сформулирована как математическая задача в следующем виде:
Найти вектор-план =(X1,X2,...,Xn), удовлетворяющий системе ограничений
i=1,...,m,
Xj 0 ,
и доставляющий целевой функции задачи
F( ) =
максимальное значение.
Информация о работе Исследование операций в производственном менеджменте