Методы принятия управленческих решений

Автор работы: Пользователь скрыл имя, 24 Сентября 2013 в 12:10, курсовая работа

Описание работы

Одна из наиболее распространенных задач математического программирования — транспортная задача. Транспортная задача (задача Монжа —Канторовича) —математическая задача линейного программирования специального вида о поиске оптимального распределения однородных объектов из аккумулятора к приемникам с минимизацией затрат на перемещение. Для простоты понимания рассматривается как задача об оптимальном плане перевозок грузов из пунктов отправления в пункты потребления, с минимальными затратами на перевозки. Транспортная задача является по теории сложности вычислений NP-сложной и входит в класс сложности NP. Когда суммарный объём предложений (грузов, имеющихся в пунктах отправления) не равен общему объёму спроса на товары (грузы), запрашиваемые пунктами потребления, транспортная задача называется несбалансированной (открытой).

Файлы: 1 файл

Курсовая работа МПУР.docx

— 171.84 Кб (Скачать файл)

 

Проверим необходимое  и достаточное условие разрешимости задачи.

∑a = 70 + 65 + 90 = 225

∑b = 50 + 65 + 65 + 15 + 30 = 225

  1. Построим первый опорный план транспортной задачи. Для каждой строки и столбца таблицы условий найдем разности между двумя минимальными тарифами, записанными в данной строе или столбце, и поместим их в соответствующем дополнительном столбце или строке.
 

50

65

65

15

30

70

20

21

22[55]

23[15]

24

65

22[35]

28

31

40

15[30]

90

23[15]

27[65]

34[10]

43

18


 

Сведем все вычисления в одну таблицу.

 

50

65

65

15

30

d1

d2

d3

d4

d5

70

20

21

22[55]

23[15]

24

1

1

-

-

-

65

22[35]

28

31

40

15[30]

7

7

7

6

-

90

23[15]

27[65]

34[10]

43

18

5

5

5

4

4

d1

2

6

9

17

3

 

 

 

 

 

 

 

 

 

 

d2

2

6

9

-

3

 

 

 

 

 

 

 

 

 

 

d3

1

1

3

-

3

 

 

 

 

 

 

 

 

 

 

d4

1

1

3

-

-

 

 

 

 

 

 

 

 

 

 

d5

0

0

0

-

-

 

 

 

 

 

 

 

 

 

 

 

В результате получен первый опорный план, который является допустимым, так как все грузы из баз  вывезены, потребность магазинов  удовлетворена, а план соответствует  системе ограничений транспортной задачи.

Подсчитаем число занятых  клеток таблицы, их 7, а должно быть m + n - 1 = 7. Следовательно, опорный план является невырожденным.

2) Проверим оптимальность  опорного плана. Найдем предварительные потенциалы ui, vi. по занятым клеткам таблицы, в которых ui + vi = cij, полагая, что u1 = 0.

 

v1=11

v2=15

v3=22

v4=23

v5=4

u1=0

20

21

22[55]

23[15]

<span class="Text_0020body__Char" style=" fon



Информация о работе Методы принятия управленческих решений