Автор работы: Пользователь скрыл имя, 09 Апреля 2013 в 01:35, контрольная работа
При исследовании операций часто приходится сталкиваться с работой своеобразных систем, называемых системами массового обслуживания (СМО). Примерами таких систем могут служить: телефонные станции, ремонтные мастерские, билетные кассы, справочные бюро, магазины, парикмахерские и т. п. Каждая СМО состоит из какого-то числа обслуживающих единиц (или «приборов»), которые мы будем называть каналами обслуживания. Каналами могут быть: линии связи, рабочие точки, кассиры, продавцы, лифты, автомашины и др. СМО могут быть одноканальными и многоканальными.
Министерство образования и науки Российской федерации
Федеральное государственное
бюджетное образовательное
«Комсомольский-на-Амуре государственный
технический университет»
Факультет экономики и менеджмента
Кафедра экономики и финансов
Контрольная работа
По дисциплине «Теория систем массового обслуживания»
Характеристики и методы анализа одноканальных систем массового обслуживания
Студент группы 2ЭКб2Ка-1
Преподаватель
2012
Введение
При исследовании операций
часто приходится сталкиваться с
работой своеобразных систем, называемых
системами массового
Системы массового обслуживания делятся на типы (или классы) по ряду признаков. Первое деление: СМО с отказами и СМО с очередью. В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем процессе обслуживания не участвует. Примеры СМО с отказами встречаются в телефонии: заявка на разговор, пришедшая в момент, когда все каналы связи заняты, получает отказ и покидает СМО необслуженной. В СМО с очередью заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь и ожидает возможности быть обслуженной. На практике чаще встречаются (и имеют большее значение) СМО с очередью; недаром теория массового обслуживания имеет второе название: «теория очередей».
СМО с очередью подразделяются
на разные виды, в зависимости от
того, как организована очередь—ограничена
она или не ограничена. Ограничения
могут касаться как длины очереди,
так и времени ожидания (так
называемые «СМО с нетерпеливыми
заявками»). При анализе СМО должна
учитываться также и «
В зависимости от типа СМО при оценке её эффективности могут применяться те или иные величины (показатели эффективности). Например, для СМО с отказами одной из важнейших характеристик её продуктивности является так называемая абсолютная пропускная способность – среднее число заявок, которое может обслужить система за единицу времени. Наряду с абсолютной, часто рассматривается относительная пропускная способность – средняя доля поступивших заявок, обслуживаемая системой (отношение среднего числа обслуживаемых в единицу времени заявок к среднему числу поступающих заявок за это время). Помимо этого при анализе СМО с отказами могут интересовать ещё среднее число занятых каналов, среднее относительное время простоя системы в целом и отдельного канала и т.д.
Характеристики СМО с ожиданиями. Для СМО с неограниченным ожиданием абсолютные и относительные пропускные способности теряют смысл. Зато важными являются: среднее число заявок в очереди, среднее число заявок в системе (в очереди и под обслуживанием), среднее время ожидания заявки в очереди, среднее время пребывания заявки в системе и другие. Для СМО с ограниченным ожиданием интерес представляют обе группы характеристик.
Для анализа процесса, протекающего в СМО, существенно знать основные параметры системы: число каналов n, интенсивность потока заявок l, производительность каждого канала (среднее число заявок , обслуживаемых непрерывно занятым каналом в единицу времени), условия образования очереди (ограничения, если они есть
1 Одноканальная СМО с отказами в обслуживании
Проведем анализ простой одноканальной СМО с отказами в обслуживании, на которую поступает пуассоновский поток заявок с интенсивностью λ, а обслуживание происходит под действием пуассоновского потока с интенсивностью μ.
Работу одноканальной СМО n=1 можно представить в виде размеченного графа состояний (1.1).
Переходы СМО из одного состояния S0 в другое S1 происходят под действием входного потока заявок с интенсивностью λ, а обратный переход – под действием потока обслуживания с интенсивностью μ.
λ
S0 |
S1 |
μ
S0 – канал обслуживания свободен; S1 – канал занят обслуживанием;
Рис. 1.1 Размеченный граф состояний одноканальной СМО
Запишем систему дифференциальных
уравнений Колмогорова для
Откуда получим
Это уравнение можно решить при начальных условиях в предположении, что система в момент t=0 находилась в состоянии S0, тогда р0(0)=1, р1(0)=0.
В этом случае решение дифференциального уравнения позволяет определить вероятность того, что канал свободен и не занят обслуживанием:
Тогда нетрудно получить выражение для вероятности определения вероятности занятости канала:
Вероятность р0(t) уменьшается с течением времени и в пределе при t→∞ стремится к величине
а вероятность р1(t) в то же время увеличивается от 0, стремясь в пределе при t→∞ к величине
Эти пределы вероятностей могут быть получены непосредственно из уравнений Колмогорова при условии
Функции р0(t) и р1(t) определяют переходный процесс в одноканальной СМО и описывают процесс экспоненциального приближения СМО к своему предельному состоянию с постоянной времени характерной для рассматриваемой системы.
С достаточной для практики точностью можно считать, что переходный процесс в СМО заканчивается в течение времени, равно 3τ.
Вероятность р0(t) определяет относительную пропускную способность СМО, которая определяет долю обслуживаемых заявок по отношению к полному числу поступающих заявок, в единицу времени.
Действительно, р0(t) есть вероятность того, что заявка, пришедшая в момент t, будет принята к обслуживанию. Всего в единицу времени приходит в среднем λ заявок и из них обслуживается λр0 заявок.
Тогда доля обслуживаемых заявок по отношению ко всему потоку заявок определятся величиной
В пределе при t→∞ практически уже при t>3τ значение относительной пропускной способности будет равно
Абсолютная пропускная способность, определяющая число заявок, обслуживаемых в единицу времени в пределе при t→∞, равна:
Соответственно доля заявок, получивших отказ, составляет в этих же предельных условиях:
а общее число не обслуженных заявок равно
Примерами одноканальных
СМО с отказами в обслуживании
являются: стол заказов в магазине,
диспетчерская
2. Одноканальная СМО с ограниченной длиной очереди
В коммерческой деятельности чаще встречаются СМО с ожиданием (очередью).
Рассмотрим простую
Граф этой СМО представлен на рис. 2.1 .
Sm
S3
S2
S1
S0
λ λ λ λ ... λ
μ μ μ μ ... μ
Рис. 2.1. Размеченный граф процесса «рождения - гибели» обслуживания все интенсивности потоков обслуживания равны
Состояния СМО можно представить следующим образом:
S0 - канал обслуживания свободен,
S, - канал обслуживания занят, но очереди нет,
S2 - канал обслуживания занят, в очереди стоит одна заявка,
S3 - канал обслуживания занят, в очереди стоят две заявки,
Sm+1 - канал обслуживания занят, в очереди все т мест заняты, любая следующая заявка получает отказ.
Для описания случайного процесса
СМО можно воспользоваться
p1 = ρ * ρо
p2=ρ2 * ρ0
pk=ρk * ρ0
Pm+1 = pm=1 * ρ0
p0=[1+ρ+ρ2+ρ3+...+ρm+1]-1
Выражение для р0 можно в данном случае записать проще, пользуясь тем, что в знаменателе стоит геометрическая прогрессия относительно р, тогда после соответствующих преобразований получаем:
ρ= (1- ρ )
(1- ρm+2)
Эта формула справедлива для всех р, отличных от 1, если же р = 1, то р0 = 1/(т + 2), а все остальные вероятности также равны 1/(т + 2). Если предположить т = 0, то мы переходим от рассмотрения одноканальной СМО с ожиданием к уже рассмотренной одноканальной СМО с отказами в обслуживании. Действительно, выражение для предельной вероятности р0 в случае т = 0 имеет вид:
pо = μ / (λ+μ)
И в случае λ = μ имеет величину р0 = 1 / 2.
Определим основные характеристики одноканальной СМО с ожиданием: относительную и абсолютную пропускную способность, вероятность отказа, а также среднюю длину очереди и среднее время ожидания заявки в очереди.
Заявка получает отказ, если она поступает в момент времени, когда СМО уже находится в состоянии Sm+1 и, следовательно, все места в очереди да заняты и один канал обслуживает Поэтому вероятность отказа определяется вероятностью появлением
Состояния Sm+1:
Pотк = pm+1 = ρm+1 * p0
Относительная пропускная способность, или доля обслуживаемых заявок, поступающих в единицу времени, определяется выражением
Q = 1- pотк = 1- ρm+1 * p0
абсолютная пропускная способность равна:
A = Q * λ
Среднее число заявок Lоч стоящих в очереди на обслуживание, определяется математическим ожиданием случайной величины к - числа заявок, стоящих в очереди
Lоч-= M(k).
случайная величина к принимает следующие только целочисленные значения:
1 - в очереди стоит одна заявка,
2 - в очереди две заявки,
т-в очереди все места заняты
Вероятности этих значений определяются соответствующими вероятностями состояний, начиная с состояния S2. Закон распределения дискретной случайной величины к изображается следующим образом:
k |
1 |
2 |
m | |
pi |
p2 |
p3 |
pm+1 |
Математическое ожидание этой случайной величины равно:
Lоч = 1* p2 +2* p3 +...+ m* pm+1
В общем случае при p ≠1 эту сумму можно преобразовать, пользуясь моделями геометрической прогрессии, к более удобному виду:
Lоч = p2 * 1- pm * (m-m*p+1) * p0
( 1- p )2
В частном случае при р = 1, когда все вероятности pk оказываются равными, можно воспользоваться выражением для суммы членов числового ряда
1+2+3+ m = m(m+1)
2
Тогда получим формулу
L’оч = m(m+1) * p0 = m(m+1) (p=1).
2 2(m+1)
Применяя аналогичные рассуждения и преобразования, можно показать, что среднее время ожидания обслуживания за явки а очереди определяется формулами Литтла
Точ = Lоч/А (при р ≠ 1) и Т1оч = L’оч /А(при р = 1).
Такой результат, когда оказывается, что Точ ~ 1/ λ, может показаться странным: с увеличением интенсивности потока заявок как будто бы должна возрастать длина очереди и уменьшается среднее время ожидания. Однако следует иметь в виду, что, во-первых, величина Lоч является функцией от λ и μ и, во-вторых, рассматриваемая СМО имеет ограниченную длину очереди не более m заявок.
Информация о работе Характеристики и методы анализа одноканальных систем массового обслуживания