Понятие и классификация средств измерений

Автор работы: Пользователь скрыл имя, 04 Ноября 2014 в 11:08, контрольная работа

Описание работы

Отмечено, что при строгом подходе существуют только прямые измерения и предлагается применять термин прямой метод измерений. Это предложение нельзя назвать удачным (см. далее классификацию методов измерений). Как примеры прямых измерений приведены: измерение длины детали микрометром, силы тока амперметром, массы на весах.

Файлы: 1 файл

Метрология.docx

— 67.52 Кб (Скачать файл)

 

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

 

ФГБОУ ВПО «Уральский государственный экономический университет»

 

Центр дистанционного образования

 

 

 

Контрольная работа

по дисциплине: Метрология и сертификация.

по теме:  Понятие и классификация средств измерений.

 

 

Исполнитель: студентка

Направление Управление качеством

                                     Профиль Бакалавр

                                                                                                    Группа УК-13Пр

Ф.И.О Бобошина Наталья Вячеславовна

Екатеринбург

2011

 

 

 Измерение, методы  и классификация измерений

 

 

 

 Измерение

Измерение физической величины – совокупность  операций  по  применению технического средства ,  хранящего единицу  физической величины, обеспечивающих нахождение   соотношения  (в  явном  или  неявном  виде) измеряемой величины с ее единицей и получение значения этой величины.

Суть измерения состоит в определении числового значения физической величины. Этот процесс называют измерительным преобразованием, подчеркивая связь измеряемой физической величины с полученным числом. Можно представить однократное преобразование или цепочку преобразований измеряемой физической величины в иную величину, и конечной целью преобразования является получение числа Более строго это можно представить как получение информации о физической величине и такое ее преобразование, с помощью которого определяют соотношение измеряемой физической величины и единицы этой величины.

Измерительное преобразование всегда осуществляется с использованием некого физического закона или эффекта, который рассматривают как принцип, являющийся основой измерения.

 

 Принцип измерений – физическое явление или эффект, положенное в основу измерений

Например, измерение температуры с помощью термопары (использование термоэлектрического эффекта); измерение массы взвешиванием на пружинных весах (определение силы тяжести, которая пропорциональна искомой массе, основано на принципе пропорционального упругого растяжения) и др. Поскольку принципы измерений связаны с измерительными преобразованиями, то можно говорить о средствах измерений, построенных на механических, оптических, электрических, пневматических, гидравлических, магнитных и других, в том числе и комбинированных принципах преобразования измерительной информации, чем фактически определяются принципы измерений при использовании этих средств.

Для систематизации подхода к измерению, для выявления и оценки погрешностей, прежде всего, необходимо классифицировать сами измерения.

 

  Классификация  измерений

Область измерений – совокупность измерений физических величин, свойственных какой-либо области науки или техники и выделяющихся своей спецификой. В соответствии с определением выделяют ряд областей измерений: механические, магнитные, акустические, измерения ионизирующих излучений и др.

Видом измерений названа часть области измерений, имеющая свои особенности и отличающаяся однородностью измеряемых величин. Приведены примеры видов измерений: измерения электрического сопротивления, электродвижущей силы, электрического напряжения, магнитной индукции, относящиеся к области электрических и магнитных измерений. Дополнительно выделены подвиды измерений – часть вида измерений, выделяющаяся особенностями измерений однородной величины (по диапазону, по размеру величины и др.) и примеры подвидов (измерения больших длин, имеющих порядок десятков, сотен, тысяч километров или измерения сверхмалых длин — толщин пленок как подвиды измерений длины).

Более широкая трактовка видов измерений (с использованием различных оснований классификации) позволяет отнести к ним также приведенные в НД, но не сформированные в классификационные группы измерения, характеризуемые следующими альтернативными парами терминов:

·   прямые и косвенные измерения,

·   совокупные и совместные измерения,

·   абсолютные и относительные измерения,

·   однократные и многократные измерения,

·   статические и динамические измерения,

·   равноточные и неравноточные измерения.

Прямые и косвенные измерения различают в зависимости от способа получения результата измерений.

 

 Прямое измерение – измерение, при котором искомое значение физической величины получают непосредственно.

Отмечено, что при строгом подходе существуют только прямые измерения и предлагается применять термин прямой метод измерений. Это предложение нельзя назвать удачным (см. далее классификацию методов измерений). Как примеры прямых измерений приведены: измерение длины детали микрометром, силы тока амперметром, массы на весах.

Косвенное измерение – определение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной. Там же сказано, что вместо термина косвенное измерение часто применяют термин косвенный метод измерений.

Прямые и косвенные измерения характеризуют измерения некоторой конкретной одиночной физической величины. Измерение любого множества физических величин классифицируется в соответствии с однородностью (или неоднородностью) измеряемых величин. На этом и построено различение совокупных и совместных измерений.

Совокупные измерения – проводимые одновременно измерения нескольких одноименных величин, при которых искомые значения величин определяют путем решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях. Приведенный пример – определение значений массы отдельных гирь набора по известному значению массы одной из гирь и по результатам измерений (сравнений) масс различных сочетаний

Для отображения результатов, получаемых при измерениях, могут быть использованы разные оценочные шкалы, в том числе градуированные в единицах измеряемой физической величины, либо в некоторых относительных единицах, в том числе и в неименованных. В соответствии с этим принято различать абсолютные и относительные измерения.

Абсолютное измерение – измерение, основанное на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант.

Относительное измерение – измерение отношения величины к одноименной величине, играющей роль единицы, или измерение изменения величины по отношению к одноименной величине, принимаемой за исходную.

По числу повторных измерений одной и той же величины различают однократные и многократные измерения. Однократное измерение – измерение, выполненное один раз.

Многократное измерение – измерение физической величины одного и того же размера, результат которого получен из нескольких следующих друг за другом измерений, т. е. состоящее из ряда однократных измерений.

Многократные измерения проводят или для страховки от грубых погрешностей или для последующей математической обработки результатов (расчет средних значений, статистическая оценка отклонений и др.). Многократные измерения называют также «измерения с многократными наблюдениями». В зависимости от поставленной цели число повторных измерений может колебаться в широких пределах (от двух измерений до нескольких десятков и даже сотен).

Статическое измерение – измерение физической величины, принимаемой в соответствии с конкретной измерительной задачей за неизменную на протяжении времени измерения. Примеры (измерение длины детали при нормальной температуре и измерение размеров земельного участка) скорее запутывают, чем проясняют ситуацию.

Динамическое измерение – измерение изменяющейся по размеру физической величины.

По реализованной точности и по степени рассеяния результатов при многократном повторении измерений одной и той же величины различают равноточные и неравноточные, а также на равнорассеянные и неравнорассеянные измерения.

Равноточные измерения – ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений в одних и тех же условиях с одинаковой тщательностью.

Неравноточные измерения – ряд измерений какой-либо величины, выполненных различающимися по точности средствами измерений и (или) в разных условиях.

В зависимости от планируемой точности измерения делят на технические и метрологические. К техническим следует относить те измерения, которые выполняют с заранее установленной точностью.

Метрологические измерения выполняют с максимально достижимой точностью, добиваясь минимальной (при имеющихся ограничениях) погрешности измерения.

 

 Методы измерений

Метод измерений – прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализованным принципом измерений. В примечании сказано, что метод измерений обычно обусловлен устройством средств измерений.

 

  Метод непосредственной  оценки;

·   Метод сравнения с мерой;

·   Нулевой метод измерений;

·   Дифференциальный метод измерений;

·   Метод измерений замещением;

·   Метод измерений дополнением;

·   Контактный метод измерений;

·   Бесконтактный метод измерений.

Метод непосредственной оценки – метод измерений, при котором значение величины определяют непосредственно по показывающему средству измерений

Метод сравнения с мерой (метод сравнения) – метод измерений, в котором измеряемую величину сравнивают с величиной, воспроизводимой мерой.

Метод сравнения с мерой реализуется в нескольких разновидностях, среди которых различают:

- дифференциальный и нулевой методы измерений,

- метод совпадений,

- метод измерений замещением  и метод противопоставления,

- метод измерений дополнением.

Дифференциальный метод измерений (дифференциальный метод) – метод измерений, при котором измеряемая величина сравнивается с однородной величиной, имеющей известное значение, незначительно отличающееся от значения измеряемой величины, и при котором измеряется разность между этими двумя величинами

Нулевой метод измерений (нулевой метод) – метод сравнения с мерой, в котором результирующий эффект воздействия измеряемой величины и меры на прибор сравнения доводят до нуля.

Метод совпадений  – метод сравнения с мерой, в котором значение измеряемой величины оценивают, используя совпадение ее с величиной, воспроизводимой мерой (т.е. с фиксированной отметкой на шкале физической величины).

В зависимости от одновременности или неодновременности воздействия на прибор сравнения измеряемой величины и величины, воспроизводимой мерой, различают метод измерений замещением и метод противопоставления.

 

  Метод измерений замещением (метод замещения) – метод сравнения  с мерой, в котором измеряемую  величину замещают мерой с  известным значением величины.

Метод замещения – метод сравнения с мерой, в котором известную величину, воспроизводимую мерой, после настройки прибора замещают измеряемой величиной, то есть эти величины воздействуют на прибор последовательно.

 

 Метод противопоставления – метод сравнения с мерой, в котором измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения, с помощью которого устанавливается соотношение между этими величинами.

 

  Метод измерений дополнением (метод дополнения) – метод сравнения  с мерой, в котором значение  измеряемой величины дополняется  мерой этой же величины с  таким расчетом, чтобы на прибор  сравнения воздействовала их  сумма, равная заранее заданному  значению.

Информация о работе Понятие и классификация средств измерений