Автор работы: Пользователь скрыл имя, 20 Октября 2015 в 17:25, курсовая работа
Для определения показателей качества в товароведении применяют различные методы, которые основываются на правилах применения определенных принципов и средств испытаний. К средствам испытаний могут относиться техническое устройство, вещество и/или материал для проведения испытаний.
В зависимости от источника и способа получения информации эти методы классифицируются на объективные, эвристические, статистические и комбинированные (смешанные).
Введение……………………………………………………………….... 2
Глава 1.Понятие качества товаров и методы оценки качества
товаров.
1.1 Объективные методы определения показателей качества………6
1.2. Эвристические методы…………………………………………….12
1.3 Физические методы…………………………………………………16
1.4 Физико – химические методы……………………………………...20
1.5 Химические методы………………………………………………...38
Заключение…………………………….………………………………39
Список используемой литературы……………..………………………40
Порядок проведения анализа. С помощью нормальной жидкости или дистиллированной воды проверяют правильность показаний рефрактометра. Затем, протерев досуха призмы, оплавленной стеклянной палочкой на нижнюю призму помещают несколько капель исследуемой жидкости, из которой предварительным фильтрованием через вату или марлю удаляют взвешенные частицы. Нижнюю призму накрывают верхней.
Смотря в окуляр, зеркалом направляют отраженный свет в верхнюю часть окошка оправы призмы, если жидкости мутные. Затем рычагом перемещают окуляр до совмещения визира с границей раздела темной и светлой частей поля зрения. Головку окуляра необходимо установить по глазу так, чтобы деления и цифры шкалы были отчетливо видны. Если граница окажется расплывчатой, радужной, то, вращая рукоятку компенсатора, добиваются четкости и записывают показания шкалы. Таким образом производят не менее трех отсчетов. Окончательным результатом является среднее арифметическое из всех отсчетов. В процессе определения необходимо следить за показаниями термометра. Если температура окажется выше или ниже 200С, то необходимо пользоваться температурными поправками либо произвести предварительное темперирование призм.
Простейшим устройством для темперирования призм является тубусная склянка вместимостью 3-5 л, соединяемая резиновыми трубками с оправами призм и установленная несколько выше рефрактометра. Вода, имеющая температуру на 2-30 выше 200С (в зависимости от температуры помещения), сначала поступает в оправы, а затем через трубку, надетую на нижний отросток оправы, в раковину или ведро. Скорость поступления и вытекания воды в оправы регулируют винтовными зажимами.
После того как граница раздела света и тени совместится с перекрестием трубы, делают отсчет по шкале. Индексом для отсчета служит неподвижный горизонтальный штрих. Целые, десятые, сотые и тысячные доли значения показателя преломления отсчитывают по шкале, десятичные доли оценивают на глаз.
Рефрактометр РПЛ-3. Этот рефрактометр предназначен для определения показателя преломления жидкости и содержания сухих веществ по сахарозе в кондитерских изделиях, консервах, крахмале, патоке и т. д.
Перед началом измерений проверяют нуль-пункт прибора, для чего на полированную плоскость измерительной призмы наносят 1-2 капли дистиллированной воды и устанавливают окуляр на резкость по шкале и визирной линии сетки. После этого окуляр перемещают по шкале до тех пор, пока визирная линия сетки не совместится с границей светотеней. При правильной установки прибора на нуль-пункт граница светотени при 200С должна совместится с нулевым делением шкалы сухих веществ и делением nD=1.33299 шкалы показателей преломления. В случае отклонения от этих значений прибор необходимо установить ключом на нуль, для чего следует освободить пробу на корпусе, через отверстие в корпусе на квадрат винта вставить ключ и вращением его в ту или другую сторону совместить линию границы светотени с делением nD=1.33299, нулевым делением шкалы сухих веществ и визирной линией сетки.
Установив прибор на нуль-пункт, поднимают верхнюю камеру, вытирают соприкасающиеся плоскости призм досуха, сначала фильтровальной бумагой, а затем неворсистой салфеткой. После этого на поверхность измерительной призмы наносят 1-2 капли исследуемого раствора и плавно опускают верхнюю камеру.
В одно из окон осветителем направляют свет, при этом другое окно должно быть закрыто ширмой. Перемещая окуляр, вводят в поле зрения прибора границу светотени, устанавливают ее на резкость, одновременно поворачивают сектор компенсатора. Перемещают рукоятку с окуляром до совмещения визирной линии сетки с границей светотени и по шкале производят отсчет показаний. Измерения следует производить при 200С. Анализ можно проводить при температуре в интервале 10 - 300С. При этом необходимо вводить поправку на температуру, выраженную в процентах сухих веществ. Нуль-пункт прибора во всех случаях устанавливают при 200С.
Фотоколориметрия.
Задача фотоколориметрии - определение содержания вещества в растворе. Фотоколориметрический метод основан на избирательном поглощении исследуемым веществом монохроматического света. Окраска исследуемого растворенного вещества может быть естественной или полученной при взаимодействии его со специфическими реактивами.
В фотоэлектроколориметрах в отличие от спектрофотометров монохроматический свет выделяют окрашенными светофильтрами в довольно широком участке спектра.
Изменение интенсивности светового потока при прохождении его через окрашенное вещество измеряют с помощью фотоэлементов. Каждое окрашенное вещество характеризуется своим спектром поглощения.
Содержание исследуемого вещества определяют непосредственно в испытуемом растворе или после предварительного отделения его от тех примесей, которые также могут образовывать окрашенные соединения с добавленным реактивом. Интенсивность окраски исследуемого раствора выражают соотношением между величинами падающего светового потока до и после прохождения его через этот раствор.
Законы, устанавливающие зависимость поглощения света веществом от количества поглощающих центров, открыты Бугером, Ламбертом и Беером.
Бугер установил, что при прочих равных условиях слои вещества одинаковой толщины поглощают одну и ту же часть дающего на них светового потока. При этом поглощение светового потока не зависит от абсолютной интенсивности падающего света. Зависимость между интенсивностью монохроматического светового потока после прохождения его через раствор и интенсивностью падающего монохроматического светового потока выражается убывающей показательной функцией
Ф=Ф0е-k'l,
где Ф0 -- интенсивность падающего монохроматического светового потока;
Ф -- интенсивность монохроматического светового потока после прохождения его через раствор;
е - основание натуральных логарифмов;
l - толщина слоя;
k' - коэффициент поглощения лучей, зависящий от природы вещества и длины волны светового потока.
При расчетах удобнее пользоваться десятичными логарифма. Для перехода логарифмов от натуральных к десятичным применяют формулу
Ф=Ф0 . 10-kl,
где k -- коэффициент погашения лучей (& = 2,3026k').
При одной и той же длине волны светового потока коэффициенты поглощения и погашения зависят только от природы вещества. Коэффициент погашения равен обратной величине толщины слоя вещества, ослабляющего интенсивность проходящего через него светового потока в 10 раз, т. е. k = .
Беер установил, что между концентрацией растворенного окрашенного вещества и поглощающей способностью раствора имеется прямая пропорциональная зависимость
k=c,
где -- постоянная величина, зависящая от природы растворенного вещества и длины волны светового потока, но не зависящая от его концентрации;
с - концентрация вещества в растворе.
Закон Бугера -- Ламберта рассматривает изменения поглощения светового потока средой, пропускающей свет, при изменении толщины этой среды. Закон Беера устанавливает изменения поглощения светового потока одинаковой толщины при изменении концентрации вещества.
В отличие от закона Бугера -- Ламберта закон Беера имеет много исключений, которые следует учитывать при фотоколориметрировании. В практике фотоколориметрии меняются не только концентрации, но и толщина слоя растворов.
Объединяя приведенные уравнения, получим выражение основного закона фотоколориметрии Бугера -- Ламберта -- Беера для растворов
Выразив концентрацию растворенного вещества в грамм-молях на 1 л, а толщину слоя в сантиметрах, получим коэффициент молярного погашения (коэффициент ').
При постоянной длине волны 'поглощаемого светового потока и одной и той же температуре коэффициент молярного погашения -- величина постоянная для каждого вещества. В зависимости от строения вещества коэффициент молярного погашения меняется в очень широких пределах: так, для хромата калия ' = 500, а для роданида железа ' = 100. Пользоваться уравнением сложно, так как величины концентрации и толщины слоя находятся в показателе степени. Для приведения его к виду, удобному для расчета, и выведения некоторых фотометрических величин его преобразовывают в следующее уравнение:
lg= cl.
пищевой продукт свойство доброкачественность
Левую часть этого уравнения, показывающую отношение интенсивности падающего светового потока к интенсивности светового потока, прошедшего через раствор, называют экстинкцией или погашением и обозначают Е:
Е=lg=cl.
Натуральный логарифм отношения интенсивности падающего светового потока к интенсивности прошедшего через раствор светового потока называют оптической плотностью или поглощением и обозначают D:
D=ln=kcl.
Из сопоставления последних двух уравнений следует, что между оптической плотностью и экстинкцией имеется соотношение
Е= 2,3026D.
Экстинкция и оптическая плотность пропорциональны концентрации вещества в растворе. Отношение интенсивности светового потока, прошедшего через раствор, к интенсивности падающего светового потока называют прозрачностью (пропусканием) вещества и обозначают Т:
Т=.
Величина Т, отнесенная к толщине слоя 1 см, называется коэффициентом светопропускания, который показывает, какая часть световой энергии проходит через испытуемый раствор. Коэффициент пропускания меняется от 1 до 0 или от 100% до 0.
Практика показывает, что особенно часто нарушается основной закон фотоколориметрии при высоких концентрациях растворов. Причиной этого является взаимодействие молекул растворенного вещества друг с другом и с молекулами растворителя. Основной закон фотоколориметрии нарушается не только при исследовании концентрированных растворов. Причины, вызывающие подобные нарушения, разнообразны: влияние электролитов, диссоциация веществ, изменение рН и др.
У одних окрашенных соединений окраска возникает постепенно и через некоторое время как бы «созревает», у других -- образовавшаяся максимально интенсивная окраска постепенно бледнеет. Поэтому перед фотоколориметрированием устанавливают интервал времени, в котором окраска достигает максимальной величины и устойчива и течение времени, достаточного для колориметрирования. Например, для определения по Гриссу нитритов в мясных продуктах рекомендуется проводить колориметрирование через 15 мин после внесения реактивов в испытуемую вытяжку.
Образование окрашенного соединения, его интенсивность зависят и от других факторов: количества и концентрации применяемых реактивов, порядка их внесения, нестойкости окраски и ее изменения во времени, вызванного изменением химического состава растворенного вещества, образования даже небольшого количества других веществ, имеющих собственную окраску и меняющих оттенок исследуемого раствора.
При проведении фотоэлектроколориметрии не требуются стандартные растворы для сравнения с исследуемым образцом. Достаточно приготовить одну серию растворов с известной и различной концентрацией определяемого вещества, установить зависимость силы фототока от концентрации стандартных растворов и построить график этой зависимости. Пользуясь графиком зависимости силы тока от концентрации, определяют концентрацию испытуемого раствора.
Спектральный метод
Спектральный метод - метод, основанный на измерении пропускания или поглощения света определенной длины волны различными веществами. В основу спектроскопии положены общие законы, устанавливающие соотношение между величиной поглощения или пропускания и количеством поглощающего или пропускающего вещества.
Спектроскопию условно можно подразделить на эмиссионную и абсорбционную. Эмиссионная спектроскопия исследует излучательную способность вещества, абсорбционная спектроскопия - поглотительную способность.
Разновидности спектрального метода: абсорбционная, инфракрасная и атомно-абсорбционная спектроскопия. Спектральный анализ используется для определения разнообразных органических соединений, окрашенных и бесцветных растворов, а также минеральных элементов с концентрацией 10-2 - 10-6 моля. Точность метода высокая [±(0,1 - 0,5) отн.%]. При спектральных методах используются сложные приборы (СФ-4, СФ-10 и др.).
С помощью абсорбционной спектроскопии можно определить степень окисленности жира в различных жиросодержащих продуктах (молоке, сливочном масле и т. п.), наличие пектиновых и красящих веществ, фенольные соединения (в вине, чае, кофе, плодах и овощах), кофеин, теобромин в чае и кофе, миоглобин в мясе, микроэлементы во всех товарах; можно определять состав и количество макро- и микроэлементов, содержание в пище витаминов А, К, В1, В2, В6, никотиновой кислоты, токоферолов, каротина и др.
Внедрение спектрального анализа в практику работы испытательных лабораторий открывает принципиально новые возможности для определения веществ в многокомпонентных смесях, какими являются многие потребительские товары.
Хроматография
Хроматография -- один из наиболее эффективных методов разделения и анализа сложных смесей веществ. Этот метод был открыт русским ученым М.С.Цветом в 1903 г. В основу метода положен принцип различной сорбируемости компонентов смеси на выбранном сорбенте, т. е. на распределении веществ между двумя не смешивающимися фазами. В настоящее время он широко используется в различных областях химии и биологии.
Назначение хроматографического метода - количественное и качественное определение веществ в пробах товаров, специальным образом отобранных и отобранных. С помощью хроматографии изучают химический состав пищевых продуктов, его динамику при хранении, природу и содержание ароматических и красящих веществ, аминокислотный состав и др. Хроматография -- динамическое разделение смеси веществ с помощью сорбционных методов. Способ хроматографии охватывает множество методов разделения, но общим для всех них является то, что они основаны на распределении отдельных соединений между двумя несмешивающимися фазами, одна из которых неподвижна и омывается другой -- подвижной. В роли подвижной фазы может выступать жидкость или газ, а в качестве неподвижной -- твердые тела или жидкость.