Адаптация к физическим нагрузкам

Автор работы: Пользователь скрыл имя, 25 Июня 2013 в 21:15, контрольная работа

Описание работы

Адаптация физиологическая, совокупность физиологических реакций, лежащая в основе приспособления организма к изменению окружающих условий и направленная к сохранению относительного постоянства его внутренней среды — гомеостаза. В результате адаптации повышается устойчивость организма к холоду, теплу, недостатку кислорода, изменениям барометрического давления и др. факторам. Изучение адаптация имеет большое значение для понимания процессов саморегуляции организма, его взаимодействия с окружающей средой.

Файлы: 1 файл

Контрольная работа физиология.doc

— 138.50 Кб (Скачать файл)

В целом срочная  адаптация к физическим нагрузкам  характеризуется максимальной по уровню и неэкономной гиперфункцией, ответственной  за адаптацию функциональной системы, резким снижением физиологических резервов данной системы, явлениями чрезмерной стресс-реакции организма и возможным повреждением органов и систем. В результате двигательные, т. е. по существу, поведенческие реакции организма оказываются в значительной мере лимитированными.

Формирование срочной адаптации

В качестве примера срочной адаптации можно привести реакции организма нетренированных и тренированных людей на выполнение однократной физической нагрузки, например пробегание с максимальной скоростью дистанции 400 м. Сразу после начала работы наблюдаются резкие сдвиги в деятельности функциональных систем, которые к концу работы достигают высоких величин (табл. 1).

Таблица 1. Реакция  организма человека (мужчины, возраст 18 – 20 лет) на пробегание с максимальной скоростью дистанции 400 м

Показатель

Нетренированные спортсмены

Тренированные спортсмены

в покое

после нагрузки

в покое

после нагрузки

ЧСС, уд/мин

70

180

55

210

Вентиляция  лёгких, л

10

75

8

140

Минутный объём  кровообращения, л

6

20

4,5

30

Потребление кислорода, мл/кг/мин

4

45

4

70




 

У неподготовленного  человека эти сдвиги при выполнении аналогичной работы ниже, чем у  квалифицированного спортсмена, однако также могут достигать существенных величин, в то же время в покое  показатели ЧСС, вентиляции лёгких, минутного  объёма кровообращения значительно меньше, что говорит об экономизации работы функциональных систем спортсмена в покое.

Срочные адаптационные  реакции обусловлены величиной  раздражителя, тренированностью спортсмена, способностью функциональных систем организма  к эффективному восстановлению и др. в целом достаточно быстро преходящи. Первоначальный эффект любой напряженной работы состоит в возбуждении соответствующих афферентных и моторных центров, мобилизации деятельности мышц, органов кровообращения и дыхания, которые в совокупности образуют функциональную систему, ответственную за выполнение конкретной мышечной работы. Однако эффективность этой системы находится в строгом соответствии с имеющимися в данный момент её функциональным ресурсом, который ограничивает объём и интенсивность выполняемой работы. Увеличение этого ресурса требует многократного проявления максимальных (или близких к ним) возможностей функциональной системы, в результате чего формируется долговременная адаптация.

Срочные адаптационные реакции могут быть подразделены на три стадии.

Первая стадия связана  с активизацией деятельности различных  компонентов функциональной системы, обеспечивающих выполнение заданной работы. Это выражается в резком увеличении ЧСС, уровня вентиляции лёгких, потребления  кислорода, накопления лактата в крови и др.

Вторая стадия наступает, когда деятельность функциональной системы протекает при стабильных характеристиках основных параметров её обеспечения, в так называемом устойчивом состоянии.

Третья стадия характеризуется  нарушением установившегося баланса между запросом и его удовлетворением в силу утомления нервных центров, обеспечивающих регуляцию движений, и исчерпанием углеводных ресурсов организма. Излишне частое предъявление организму спортсмена требований, связанных с переходом в третью стадию срочной адаптации, может неблагоприятно повлиять на темпы формирования долговременной адаптации, а также привести к отрицательным изменениям в состоянии различных органов.

Каждая из указанных стадий срочной адаптации связана с  включением функциональных резервов соответствующего эшелона. Первый из них мобилизуется при переходе от состояния относительного покоя к мышечной деятельности и обеспечивает работу до проявлений компенсированного утомления, второй – при продолжении работы в условиях прогрессирующего утомления. В условиях физических нагрузок, характерных для тренировочной и соревновательной деятельности, все резервы не используются, что даёт основание для выделения третьего эшелона резервов, которые мобилизуются организмом лишь в крайне экстремальных условиях. Необходимо отметить, что в условиях, наиболее характерных для главных соревнований (Олимпийские игры, чемпионаты мира и Европы и др.), которые отличаются исключительно напряжённой конкуренцией, изменяющимися иногда неблагоприятными погодными условиями, интенсивной психической нагрузкой, спортсмены высокого класса часто способны мобилизовать функциональные резервы, находящиеся далеко за границей представлений о возможностях второго эшелона, выявленных в условиях тренировки и участия во второстепенных соревнованиях.

Срочный этап адаптации возникает  непосредственно после начала действия раздражителя на организм и может  быть реализован на основе ранее сформировавшихся физиологических механизмов. На этом этапе функционирование органов и систем протекает на пределе физиологических возможностей организма.

«Цена» адаптации – это те негативные изменения в организме, которые возникли в результате процесса адаптации (например, при акклиматизации происходят изменения в работе сердечно-сосудистой деятельности, дыхательной, а также другие изменения физиологических и физических показателей).

 

3. Долговременная  адаптация возникает постепенно, в результате длительного или многократного действия на организм факторов среды. Принципиальной особенностью такой адаптации являет­ся то, что она возникает не на основе готовых физиологических механиз­мов, а на базе вновь сформированных программ регулирования. Долго­временная адаптация, по существу, развивается на основе многократной реализации срочной адаптации и характеризуется тем, что в итоге посте­пенного количественного накопления каких-то изменений организм приоб­ретает новое качество в определенном виде деятельности - из неадаптиро­ванного превращается в адаптированный. В результате обеспечивается осуществление организмом ранее недостижимых силы, скорости и вынос­ливости при физических нагрузках, развитие устойчивости организма к значительной гипоксии, которая ранее была несовместима с активной жиз­недеятельностью, способность организма к работе при существенно изме­ненных показателях гомеостаза, развитие устойчивости к холоду, теплу, большим дозам ядов, введение которых ранее было смертельным.

 

Долговременная адаптация  характеризуется возникновением в  ЦНС новых временных связей, а  также перестройкой аппарата гуморальной регуляции функциональной системы - экономичностью функционирования гуморального звена и повышением его мощности. В ответ на ту же самую нагрузку не возникает резких изменений в организме и мышечная работа сопровождается меньшим увеличением легочной вентиляции, минутного объема крови, ферментов, гормонов, лактата, аммиака, отсутствием выра­женных повреждений. В результате становится возможным длительное и стабильное выполнение физических нагрузок. Переход от срочной к долго­временной адаптации знаменует собой узловой момент адаптационных процессов, так как именно этот переход делает возможной жизнь организ­ма в новых условиях, расширяет сферу его обитания и свободу поведения в меняющейся среде. Этот момент определяется прежде всего тем, что воз­никает активация синтеза нуклеиновых кислот и белков, что приводит к избирательному развитию определенных структур, лимитирующих двига­тельную деятельность. Формируются устойчивые двигательные динамиче­ские стереотипы, развивается экстраполяция, повышающая возможность быстрой перестройки ответных реакций при изменениях среды, происхо­дит умеренная гипертрофия в скелетных мышцах, сердце, дыхательных мышцах и других рабочих органах, увеличение массы митохондрий. Суще­ственно увеличивается аэробная и анаэробная мощность организма. Нор­мализуется гомеостаз организма, уменьшается стресс-реакция. Интенсив­ность и длительность мышечной работы возрастают.

В процессе адаптации организма  обмен перестраивается в направлении более экономного расходования энергии в состоянии покоя и повы­шенной мощности метаболизма в условиях физического напряжения. Такая перестройка биологически более целесообразна и может явиться общим механизмом физиологической адаптации.

Адаптивные сдвиги энергетического обмена заключаются в переключении с углеводного типа на жировой Ведущую роль в этом играют гормо­ны: глюкокортикоиды ускоряют распад белка, активируя превращение аминокислот в глюкозу, а катехоламины вызывают мобилизацию резерва гликогена в печени и активацию липолиза жировой ткани, увеличивая при­ток кислорода, глюкозы, аминокислот и жирных кислот к работающим тканям.

Определенные черты фенотипа, сформировавшиеся в результате долговременной адаптации организма к физическим нагрузкам, становятся фактором профилактики конкретных болезней или патологических синдромов. Повышение расхода жиров приводит к атрофии жировой ткани, снижению избыточного веса и, при прочих равных условиях, уменьшает развитие атеросклероза. Увеличение емкости и пропускной способности коронарных сосудов, развитие системы экстракардиальных анастомозов способствуют уменьшению вероятности закупорки коронарных артерий и возникновения инфаркта миокарда. Увеличение потенциальных резервов и мощности сердечной мышцы может в течение даже длительного времени воздействия неблагоприятных факторов на организм не приводить к возникновению сердечно-сосудистых расстройств у тренированных людей.

 

Изменения функций  различных органов и систем организма.

В состоянии покоя деятельность различных функций отрегулирована соответственно невысокому уровню кислородного запроса и энергообеспечения. При переходе к рабочему уровню необходима перестройка функций различных органов и систем на более высокий уровень активности и новое межсистемное согласование на рабочем уровне.

В центральной нервной системе происходит повышение лабильности и возбудимости многих проекционных и ассоциативных нейронов. Во время работы "нейроны движения" организуют через пирамидный путь моторную активность, а "нейроны положения" через экстрапирамидную систему - формирование рабочей позы. В различных отделах ЦНС создается функциональная система нервных центров, обеспечивающая выполнение задуманной цели действия на основе анализа внешней информации, действующих в данный момент мотиваций и хранящихся в мозгу памятных следов двигательных навыков и тактических комбинаций. Возникающий комплекс нервных центров становится рабочей доминантой, которая имеет повышенную возбудимость, подкрепляется различными афферентными раздражениями и избирательно затормаживает реакции на посторонние раздражители. В пределах доминирующих нервных центров создается цепь условных и безусловных рефлексов или двигательный динамический стереотип, облегчающий последовательное выполнение одинаковых движений (в циклических упражнениях) или программы раз­личных двигательных актов (в ациклических упражнениях).

Еще перед началом работы в коре больших полушарий происходит предварительное программирование и формирование преднастройки на предстоящее движение, которые отражаются в различных формах изменений электрической активности. Происходит избирательное увеличение межцентральных взаимосвязей корковых потенциалов, изменяется форма кривой, огибающей амплитуду колебаний ЭЭГ, появляются "меченые ритмы" ЭЭГ - потенциалы в темпе предстоящего движения, возникают условные отрицательные колебания или так называемые "волны ожидания", а также премоторные и моторные потенциалы.

В спинном мозгу  за 60 мс перед началом двигательного акта повышается возбудимость мотонейронов, что отражается в нарастании амплитуды вызываемых в этот момент спинальных рефлексов (Н-рефлексов).

В мобилизации  функций организма и их резервов значительна роль симпатической  нервной системы, выделения гормонов гипофиза и надпочечников, нейропептидов.

В двигательном аппарате при работе повышаются возбудимость и лабильность работающих мышц, повышается чувствительность их проприорецепторов, растет температура и снижается вязкость мышечных волокон. В мышцах дополнительно открываются капилляры, которые в состоянии покоя находились в спавшемся состоянии, и улучшается кровоснабжение. Однако при больших статических напряжениях (более 30% максимального усилия) кровоток в мышцах резко затрудняется или вовсе прекращается из-за сдавливания кровеносных сосудов. Нервные импульсы, приходящие в мышцу с небольшой частотой, вызывают слабые одиночные сокращения мышечных волокон, а при повышении частоты - их более мощные тетанические сокращения.

 

Различные двигательные единицы (ДЕ) в целой скелетной мышце при длительных физических нагрузках вовлекаются в работу попеременно восстанавливаясь в периоды отдыха, а при больших кратковременных напряжениях - включаются синхронно. В зависимости от мощности работы активируются разные ДЕ: при небольшой интенсивности работы активны лишь высоковозбудимые и менее мощные медленные ДЕ, а с повышением мощности работы - промежуточные и, наконец, маловозбудимые, но наиболее мощные быстрые ДЕ.

Дыхание значительно  увеличивается при мышечной работе - растет глубина дыхания (до 2-3 л) и частота дыхания (до 40-60 вдохов в 1мин).

Минутный объем  дыхания при этом может увеличиваться  до 150-200 л • мин-1.Однако большое  потребление кислорода дыхательными мышцами (до 1л•мин-1) делает нецелесообразным предельное напряжение внешнего дыхания.

Сердечнососудистая система, участвуя в доставке кислорода работающим тканям, претерпевает заметные рабочие изменения. Увеличивается систолический объем крови (при больших нагрузках у спортсменов до 150-200 мл), нарастает ЧСС (до 180 уд • мин-1и более), растет минутный объем крови (у тренированных спортсменов до 35 л • мин-1 и более). Происходит перераспределение крови в пользу работающих органов - главным образом, скелетных мышц, а также сердечной мышцы, легких, активных зон мозга - и снижение кровоснабжения внут­ренних органов и кожи. Перераспределение крови тем более выражено, чем больше мощность работы. Количество циркулирующей крови при ра-6Ъте увеличивается за счет ее выхода из кровяных депо. Увеличивается скорость кровотока, а время кругооборота крови снижается вдвое.

Информация о работе Адаптация к физическим нагрузкам