Автор работы: Пользователь скрыл имя, 06 Июня 2013 в 06:58, курсовая работа
Федеральное государственное унитарное предприятие ФГУП «Почта России» создано распоряжением Правительства от 5 сентября 2002 года. 13 февраля 2003 года проведена государственная регистрация предприятия, принят Устав. Штаб-квартира — в Москве. Член Всемирного почтового союза.
На базе разрозненных управлений почтовой связи создана сеть филиалов ФГУП «Почта России», внедрена принципиально новая система управления региональными структурами почтовой связи на основе единых учетных принципов бухгалтерского, налогового и управленческого учетов.
1. Введение. 3
2. Общие сведения о потоках требований. 5
3. Классификация потоков требований. 6
4. Классификация систем массового обслуживания. 8
5. Характеристики систем массового обслуживания. 9
6. Задание на курсовой проект. 10
7. Теоретический расчет. 12
8. Графики. 16
а) основные показатели системы 16
б) среднее число заявок 17
в) среднее время ожидания заявки 18
9. Вывод. 19
10. Список литературы. 19
В
связи с одинаковостью
Простейший поток является частным случаем потока Пальма; в нем интервалы между событиями распределены по показательному закону.
Потоки Эрланга. Потоком Эрланга n-го порядка называется поток событий, получающийся «прореживанием» простейшего потока, когда сохраняется каждая n-я точка (событие) в потоке, а все промежуточные выбрасываются.
Интервал времени между двумя соседними событиями в потоке Эрланга n-го порядка представляет собой сумму n независимых случайных величин , имеющих показательное распределение с параметром :
Закон
распределения случайной
Математическое
ожидание, дисперсия и
Для потоков Эрланга n-го порядка вероятность поступления k требований за промежуток времени t равняется:
При k = 0:
Суммирование и разъединение простейших потоков. При объединении нескольких независимых простейших потоков образуется также простейший поток с параметром, равным сумме параметров исходных потоков. Разъединение поступающего простейшего потока с параметром λ на n направлений происходит так, что каждое требование исходного потока с вероятностью поступает на i-ое направление, а поток на i-го направления также будет простейшим с параметром . Эти свойства простейшего потока широко используются на практике, поскольку значительно упрощают расчёты стационарного оборудования и информационных сетей.
Показательный закон распределения времени обслуживания. Временем обслуживания называется время, затрачиваемое каждым узлом обслуживания на одно требование.
Время обслуживания характеризует пропускную способность каждого узла обслуживания, не связано с оценкой качества обслуживания и является случайной величиной.
Это объясняется неидентичностью узлов обслуживания и различием в спросе на обслуживание отдельных требований. Например, поступающие на ремонт вагоны имеют неисправности самого различного характера, попадают в различные ремонтные бригады, поэтому время на обслуживание для различных вагонов не будет одинаковым.
Во многих задачах теории массового обслуживания закон распределения времени обслуживания предполагается показательным и описывается выражением:
Параметр характеризует среднюю скорость обслуживания требований.
Системы массового обслуживания (далее СМО) – системы, в которых, с одной стороны, возникают массовые запросы (требования) на выполнение каких-либо видов услуг, а, с другой стороны, происходит удовлетворение этих запросов.
СМО включает в себя следующие элементы:
СМО классифицируют по разным признакам. Одним из признаков является ожидание требования начала обслуживания. В соответствии с этим признаком системы подразделяются на следующие виды:
Системы с потерями или отказами - СМО, у которых требования, поступающие в момент, когда все приборы обслуживания заняты, получают отказ и теряются.
Системы с ожиданием – СМО, у которых, возможно появление как угодно длинной очереди требований к обслуживающему устройству.
Системы с ограниченной длиной очереди – СМО, допускающие очереди, но с ограниченным числом мест в ней.
Системы с ограниченным временем ожидания – СМО, допускающие очередь, но с ограниченным сроком пребывания каждого требования в ней.
По числу каналов обслуживания СМО делятся на:
По месту нахождения источника требований СМО делятся на:
К последнему виду относится, например, станочный участок, в котором станки являются источником неисправностей, а, следовательно, и требований на их обслуживание.
Одной из форм классификации СМО является кодовая (символьная) классификация Д.Кендалла. При этой классификации характеристику системы записывают в виде трёх, четырёх или пяти символов, например A | B | S, где:
A – тип распределения входящего потока требований;
B – тип распределения времени обслуживания;
S – число каналов обслуживания.
Для экспоненциального распределения принимают символ М, для любого (произвольного) распределения – символ G. Запись M | M | 3 означает, что входящий поток требований – пуассоновский (простейший), время обслуживания распределено по экспоненциальному закону, в системе имеется три канала обслуживания.
Четвёртый символ указывает допустимую длину очереди, а пятый – порядок отбора (приоритета) требований.
Одной
из важнейших характеристик
Время обслуживания одного требования () – случайная величина, которая может изменяться в большом диапазоне. Она зависит от стабильности работы самих обслуживающих устройств, так и от различных параметров, поступающих в систему, требований (к примеру, различной грузоподъемности транспортных средств, поступающих под погрузку или выгрузку).
Случайная величина полностью характеризуется законом распределения, который определяется на основе статистических испытаний.
На практике чаще всего принимают гипотезу о показательном законе распределения времени обслуживания.
Показательный закон распределения времени обслуживания имеет место тогда, когда плотность распределения резко убывает с возрастанием времени t. Например, когда основная масса требований обслуживается быстро, а продолжительное обслуживание встречается редко. Наличие показательного закона распределения времени обслуживания устанавливается на основе статистических наблюдений.
При показательном законе распределения времени обслуживания вероятность события, что время обслуживания продлиться не более чем t, равна:
где v - интенсивность обслуживания одного требования одним обслуживающим устройством, которая определяется из соотношения:
где– среднее время обслуживания одного требования одним обслуживающим устройством.
Следует
заметить, что если закон
распределения времени обслуживания
показательный, то при наличии нескольких
обслуживающих устройств
где n – количество обслуживающих устройств.
Важным параметром СМО
где – коэффициент загрузки;
λ – интенсивность поступления требований в систему;
v – интенсивность обслуживания одного требования одним обслуживающим устройством.
Из (1) и (2) получаем, что
Учитывая, что λ – интенсивность поступления требований в систему в единицу времени, произведение показывает количество требований, поступающих в систему обслуживания за среднее время обслуживания одного требования одним устройством.
Для СМО с ожиданием количество обслуживаемых устройств n должно быть строго больше коэффициента загрузки (требование установившегося или стационарного режима работы СМО):
В противном случае число поступающих требований будет больше суммарной производительности всех обслуживающих устройств, и очередь будет неограниченно расти.
Для
СМО с отказами и смешанного типа
это условие может быть ослаблено,
для эффективной работы этих типов
СМО достаточно потребовать, чтобы
минимальное количество обслуживаемых
устройств n было не меньше коэффициента загрузки
Целью настоящего курсового проекта является исследование логистики систем почтовой связи с применением теории массового обслуживания. В раках исследования рассматривается многоканальная система массового обслуживания с ожиданием и ограничением на длину очереди. Данная СМО описываете простейшее отделение почтовой связи, в котором все окна оказывают одинаковые услуги, а длина очереди не имеет зависимости от времени. При исследовании системы определяется влияние изменений различных факторов на показатели функционирования по математической модели. Характеристики системы массового обслуживания приведены в таблице № 1.
Таблица №1:
Параметры, характеризующие
Наименование параметра |
Обозначение параметра |
Значение параметра по варианту |
Число каналов |
||
Интенсивность входящего потока каналов |
||
Производительность каждого |
||
Максимальная длина очереди |
1. Пояснения
Число каналов – общее количество каналов в системе массового обслуживания.
Интенсивность входного потока заявок – число заявок, приходящих с СМО. В единицу времени, считаем, что заявки поступают в систему непрерывно, т.е. параметр не зависит от времени. Если канал (оператор) свободен, он берет данную заявку на обслуживание, если канал (оператор) занят, заявка становиться в очередь на обслуживание.
Производительность канала – интенсивность простейшего «потока обслуживания», среднее число заявок, обслуживаемое одним каналом за единицу времени при непрерывной его работе без простоя.
2.Характеристики функционирования рассматриваемой СМО
а) при
Коэффициент нагрузки СМО (трафик):
Коэффициент нагрузки на 1 канал:
Вероятность простаивания всей системы:
Вероятности состояний каждого канала:
Вероятность состояний первого канала:
Вероятность состояний второго канала: