Принятие решений в условиях неопределенности в логистике распределения

Автор работы: Пользователь скрыл имя, 11 Апреля 2013 в 12:32, реферат

Описание работы

К задачам анализа решений в условиях риска и неопределённости в системах логистики относят задачи, для которых из-за влияния внешних, не зависящих от лица, принимающего решения (ЛПР), случайных воздействий или факторов конечный экономический результат заранее не определён. При этом, если статистические данные, характеризующие такие возможные случайные воздействия (вероятности различных ситуаций, влияющих на экономический результат; законы распределения вероятностей для ожидаемых доходов или издержек и т.п.), известны, то в таком случае говорят о принятии решений в условиях риска

Файлы: 1 файл

ПРИНЯТИЕ РЕШЕНИЙ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ.doc

— 248.00 Кб (Скачать файл)

Q4 - {самолет, который мог бы доставлять товар, - не долетел} х {машина, - которая могла бы доставлять товар, - доезжает без нападения};

Qs - {самолет, который мог бы доставлять товар, - не долетел} х {на машину, которая могла бы доставлять товар, - напали, но недостаточно организованная группировка};

Q6 - {самолет, который мог бы доставлять товар, - не долетел} х {на машину, которая могла бы доставлять товар, - напали хорошо организованная группировка}.

        1. Составим перечень анализируемых альтернативных решений в формате этой задачи оптимизации в условиях неопределенности с учетом требований ЛПР:

Х0 - отказаться от участия в сделке и положить деньги на депозит;

Х1 - вступить в сделку, причем груз доставлять авиатранспортом;

Х2 - вступить в сделку, причем груз доставлять автотранспортом без использования указанных дополнительных услуг (т.е. без охраны и без объявления страховки);

Х3 - вступить с сделку, причем груз доставлять автотранспортом, объявляя страховку - по цене приобретения;

Х4 - вступить в сделку, причем груз доставлять автотранспортом, объявляя страховку - по цене реализации;

Х5 - вступить в сделку, причем груз доставлять автотранспортом и дополнительно воспользоваться - только услугами охраны

(подчеркнем, что, вообще  говоря, возможны и другие решения,  но в соответствии с условием  далее учитываем, что ЛПР желает рассмотреть именно указанные здесь альтернативы).

        1. Для поставленной задачи оптимизации в условиях неопределенности составим соответствующую матрицу полезностей. Для ее атрибутов уже имеем:
  • {Q]; Q2; Q3; Q4; QS; Q6} - перечень возможных ситуаций, влияющих на конечный экономический результат предложения / проекта и образующих соответствующую полую группу случайных событий.
  • 0; Х1; Х2; Х3; Х4; Х5} - перечень альтернативных решений, которые ЛПР требует анализировать в рамках рассматриваемого предложения / проекта.

Для формализации матрицы  полезностей оценим соответствующие  показатели конечного экономического результата (дохода) в формате анализируемых  решений при указанных выше конкретных внешних ситуациях.

Решение Хо при ситуациях Q1, Q2, Q3, Q4, Q5, Q6:

800.000*(1+0,02)=816.000

Решение Х] при ситуациях Q], Q2, Q3:

(800.000-500.000-22.000)*1,02+560.000 = 843.560

Решение Х1 при ситуациях Q4, Qs, Q6:

(800.000-500.000-22.000)*1,02+500.000 = 783.560

Решение Х2 при ситуациях Q1, Q4:

(800.000-500.000-8.000)*1,02+560.000 = 857.840

Решение Х2 при ситуациях Q2, Q3, Qs, Q6:

(800.000-500.000-8.000)*1,02 = 297.840

Решение Х3 при ситуациях Q1, Q4:

(800.000-500.000-8.000-12.500)*1,02+560.000 = 845.090

Решение Х3 при ситуациях Q2, Q3, Qs, Q6:

(800.000-500.000-8.000-12.500)*1,02+500.000 = 785.090

Решение Х4 при ситуациях Q1, Q2, Q3, Q4, Q5, Q6:

(800.000-500.000-8.000-14.000)*1,02+560.000 = 843.560

Решение Х5 при ситуациях Q1, Q2, Q4, Qs:

(800.000-500.000-8.000-7.000)*1,02+560.000 = 850.700

Решение Х5 при ситуациях Q3, Q6:

(800.000-500.000-8.000-7.000)*1,02 = 290.700

Таким образом, матрица  полезностей в рамках рассматриваемого здесь условного примера имеет вид, представленный в таблице 10.

 

Таблица 10

 

Q1

Q2

Q3

Q4

Q5

Q6

Х0

816.000

816.000

816.000

816.000

816.000

816.000

Х1

843.560

843.560

843.560

783.560

783.560

783.560

Х2

857.840

297.840

297.840

857.840

297.840

297.840

Х3

845.090

785.090

785.090

845.090

785.090

785.090

Х4

843.560

843.560

843.560

843.560

843.560

843.560

Х5

850.700

850.700

290.700

850.700

850.700

290.700


 

ЭТАП ВЫБОРА ОПТИМАЛЬНОГО РЕШЕНИЯ

Найдем наилучшее решение  применительно к каждому из представленных в этой главе критериев принятия решений в условиях неопределенности.

ММ-критерий:

, где

Необходимые процедуры выбора наилучшего решения представлены в таблице 11.

Таблица 11

 

Q1

Q2

Q3

Q4

Q5

Q6

K

Х0

816.000

816.000

816.000

816.000

816.000

816.000

816.000

Х1

843.560

843.560

843.560

783.560

783.560

783.560

783.560

Х2

857.840

297.840

297.840

297.840

297.840

297.840

297.840

Х3

845.090

785.090

785.090

785.090

785.090

785.090

785.090

Х4

843.560

843.560

843.560

843.560

843.560

843.560

843.560

Х5

850.700

850.700

290.700

850.700

850.700

290.700

290.700


 

В дополнительном столбце  матрицы выделено наилучшее значение показателя Кi для ММ-критерия. Таким образом, в рамках классического ММ-критерия (критерий пессимизма) для данной задачи принятия решений в условиях неопределенности в качестве оптимального будет выбрано решение Х4. Конечный гарантированный результат дохода составит 843,56 тыс. у.е. Подчеркнем, что при этом ранжирование анализируемых альтернатив (в порядке убывания предпочтения) оказывается следующим:

Х4, Х0, Х5, Х3, Х2, Х1.

Отметим, дополнительно, что применительно к рассматриваемому примеру оказалось, что наилучший показатель ММ-критерия достигается именно на одном из анализируемых альтернативных решений. Соответственно, реализация процедур идентификации оптимального решения не требуется. Кроме того, подчеркнем, что указанный выше гарантированный доход (843,56 тыс. у.е.), в частности, реализуется также и в любой из ситуаций Q1-Q6.

Н-критерий:

, где

Соответствующие процедуры  выбора наилучшего решения представлены в таблице 12.

 

 

 

Таблица 12

 

Q1

Q2

Q3

Q4

Q5

Q6

K

Х0

816.000

816.000

816.000

816.000

816.000

816.000

816.000

Х1

843.560

843.560

843.560

783.560

783.560

783.560

843.560

Х2

857.840

297.840

297.840

857.840

297.840

297.840

857.840

Х3

845.090

785.090

785.090

785.090

785.090

785.090

845.090

Х4

843.560

843.560

843.560

843.560

843.560

843.560

843.560

Х5

850.700

850.700

290.700

850.700

850.700

290.700

850.700


 

В дополнительном столбце  матрицы выделено наилучшее значение показателя Кi для Н-критерия. В рамках классического Н-критерия (оптимизма) для данной задачи принятия решений в условиях неопределенности будет выбрано решение Х2: «вступить в сделку, причем груз доставлять автотранспортом без охраны и без оформления страхового контракта для операций доставки». Естественно, такое решение ориентирует ЛПР на самый благоприятный исход применительно к доставке автотранспортом: события Q1 и Q4. Легко видеть, что только в этом случае можно получить соответствующий доход. При этом и ранжирование анализируемых альтернатив соответствует более оптимистической позиции:

X2, Х5, Х3, Х1 и Х4, Х0.

N-критерий:

, где

Соответствующие процедуры  выбора наилучшего решения представлены в таблице 13.

Таблица 13

 

Q1

Q2

Q3

Q4

Q5

Q6

K

Х0

816.000

816.000

816.000

816.000

816.000

816.000

816.000

Х1

843.560

843.560

843.560

783.560

783.560

783.560

613.560

Х2

857.840

297.840

297.840

857.840

297.840

297.840

484.840

Х3

845.090

785.090

785.090

785.090

785.090

785.090

805.090

Х4

843.560

843.560

843.560

843.560

843.560

843.560

843.560

Х5

850.700

850.700

290.700

850.700

850.700

290.700

664.030


 

В дополнительном столбце  матрицы выделено наилучшее значение показателя Кi для N-критерия. Таким образом, в рамках классического N-критерия (нейтрального критерия) для данной задачи принятия решений в условиях неопределенности будет выбрано именно решение Х4: «вступить в сделку, причем товар доставлять автотранспортом с объявлением страховки по цене реализации». При этом ранжирование анализируемых альтернатив более соответствует осторожной позиции ЛПР (хотя и отличается от всех предыдущих):

X4, Х0, Х3, Х5, Х1, Х2.

Если, априори считать, что все события полной группы случайных событий Q1-Q6 равновозможны (имеют одинаковые вероятности), то указанное решение обеспечит самый большой ожидаемый доход в среднем на одну сделку. Обратим внимание на то, что значение целевой функции критерия, как раз, и указывает на величину такого среднего ожидаемого дохода.

Информация о работе Принятие решений в условиях неопределенности в логистике распределения