Автор работы: Пользователь скрыл имя, 02 Октября 2012 в 16:35, курс лекций
Раздел 1. Вентиляция на объектах промышленных предприятий
1.1 Санитарно-гигиеническое нормирование параметров атмосферного воздуха
1.2 Системы вентиляции и кондиционирования воздуха.
1.2.1 Классификация систем вентиляции.
1.2.2 Классификация систем кондиционирования воздуха.
1.3 Требования к системам вентиляции и кондиционирования воздуха
1.4 Естественная вентиляция
1.5 Механическая вентиляция
1.6 Основные требования к вентиляционным установкам
Количество тепла, поглощаемого испарителем
Участок НВ-НС соответствует изменению теплосодержания хладагента в испарителе и характеризует количество тепла, поглощаемого испарителем.
Реальный цикл охлаждения
В действительности в
Из-за
потерь давления на входе (
С другой стороны, из-за потерь давления на выходе (участок M-D') компрессор должен сжимать парообразный хладагент до давлений выше давления конденсации. Необходимость компенсации потерь увеличивает работу сжатия и снижает эффективность цикла. Помимо потерь давления в трубопроводах и клапанах, на отклонение реального цикла от теоретического влияют также потери в процессе сжатия.
Во-первых, процесс сжатия в компрессоре отличается от адиабатического. Поэтому реальная работа сжатия оказывается выше теоретической, что также ведет к энергетическим потерям.
Во-вторых, в компрессоре имеются чисто механические потери, приводящие к увеличению потребной мощности электродвигателя компрессора и увеличению работы сжатия.
В третьих, из-за того, что давление в цилиндре компрессора в конце цикла всасывания всегда ниже давления пара перед компрессором (давления испарения), также уменьшается производительность компрессора. Кроме того, в компрессоре всегда имеется объем, не участвующий в процессе сжатия, например, объем под головкой цилиндра.
Оценка эффективности цикла охлаждения
Эффективность цикла охлаждения обычно оценивается коэффициентом полезного действия или коэффициентом термической (термодинамической) эффективности.
Коэффициент эффективности может быть вычислен как соотношение изменения теплосодержания хладагента в испарителе (НС-НВ) к изменению теплосодержания хладагента в процессе сжатия (HD-HC).
Фактически
он представляет собой соотноше
Причем он не
является показателем производи
4.1.3. Основные элементы холодильной машины.
1. Компрессор.
Компрессор всасывает
Важной характеристикой компрессора является степень сжатия и объем хладагента, который нагнетается компрессором. Степень сжатия определяется как отношение максимального давления на выходе компрессора к максимальному давлению на входе.
По своему конструктивному исполнению компрессоры, используемые в холодильных машинах, могут быть разделены на две основные категории:
Принципиальное отличие ротационных, спиральных и винтовых компрессоров от поршневых заключается в том, что всасывание и сжатие хладагента осуществляется не за счет возвратно-поступательного движения поршней в цилиндрах, а за счет вращательного движения рабочих органов, соответственно пластин, спиралей и винтов.
Компрессоры поршневые
Наибольшее
распространение получили поршн
Рис. 4.4, а,б. Схема работы поршневого компрессора:
1 – выпускной клапан;
2 – линия нагнетания к конденсат
Сжатие газа обеспечивается поршнем (3) при его движении вверх по цилиндру (4). Перемещение поршня обеспечивается электродвигателем через коленчатый вал (6) и шатун (5). Всасывающие и выпускные клапаны открываются и закрываются под действием давления газа. Фаза всасывания хладагента показана на рис. 4.4, а. Поршень (3) начинает опускаться в цилиндре (4) от верхней т.н. «мертвой точки». При движении поршня вниз, над поршнем создается разрежение и парообразный хладагент через открытый впускной клапан (10) всасывается в цилиндр.
Фаза сжатия и выпуска разогретого пара высокого давления показана на рис. 4.4, 6. Поршень двигается в цилиндре вверх и сжимает пар. Выпускной клапан (1) открывается, и пар под давлением выходит из компрессора. Конструкция цилиндра такова, что поршень никогда не касается головки клапанов (10), всегда оставляя некоторое свободное пространство, называемое «мертвым объемом».
Поршневые комрессоры
производятся в различных
В герметичных комрессорах
Рис. 4.4, в. Типовой герметичный компрессор
В полугерметичных
Они широко применяются в холодильных машинах средней и средне-большой мощности (рис. 4.4, г).
Рис. 4.4, г. Полугерметичный компрессор
В
открытых компрессорах
Охлаждение
электродвигателя герметичных
Основным недостатком поршневого компрессора является наличие пульсаций давления паров хладагента на выходе из компрессора, а также большие пусковые нагрузки. Поэтому электродвигатель должен иметь запас мощности для пуска компрессора и иметь акустическую защиту для снижения уровня шума.
2. Конденсатор.
Конденсатор представляет
Тепло, выделяемое
Выделяемое
тепло отводится окружающим
Конденсаторы с воздушным охлаждением
Наибольшее
распространение получили
Теплообменник обычно
изготавливается из медных труб
Оребрение
трубок теплообменника чаще
Так, например, использование сложного профиля оребрения с просечками, выступами и т.п. позволяет создать большую турбулентность воздуха вблизи поверхности ребра. Тем самым повышается эффективность теплопередачи между хладагентом, проходящим по трубкам, и внешним воздухом. Хотя в этом случае несколько увеличивается гидравлическое сопротивление, что потребует установки вентилятора большей мощности, достигается существенное повышение производительности холодильной машины с лихвой оправдывает увеличенную энергоемкость установки.
Соединение трубки с ребрами может быть выполнено двумя способами:
◘ либо в ребре просто
◘ либо в месте подсоединения ребра к трубке делается воротничок (буртик), повышаю щий поверхность теплообмена
Преимущество первого варианта состоит в простоте (экономичности) производства, однако, в связи с неплотным контактом ребра с трубкой, передача тепла внешней среде ограничена.
Кроме того, при работе в загрязненной либо агрессивной атмосфере по контуру прилегания ребер к трубке может появиться коррозия. Это значительно снижает полезную поверхность теплообмена, приводит к снижению производительности и повышению температуры конденсации.
Скорость
воздушного потока, проходящего
через теплообменник, обычно со
Внутренняя
поверхность трубок также
Конденсаторы
обычно имеют один или
Рис. 4.5. Схема конденсатора с воздушным охлаждением:
1 – медная трубка; 2 - оребрение
Важным
аспектом является схема
На
этом начальном участке
На следующем основном участке охлаждения, составляющем около 85% всей полезной поверхности теплообменника, процесс конденсации парообразного фреона проходит при почти неизменной температуре.
Остающиеся 10% полезной поверхности теплообме
Информация о работе Лекции по “Промышленная вентиляция и кондиционирование воздуха ”