Лекции по “Промышленная вентиляция и кондиционирование воздуха ”

Автор работы: Пользователь скрыл имя, 02 Октября 2012 в 16:35, курс лекций

Описание работы

Раздел 1. Вентиляция на объектах промышленных предприятий
1.1 Санитарно-гигиеническое нормирование параметров атмосферного воздуха
1.2 Системы вентиляции и кондиционирования воздуха.
1.2.1 Классификация систем вентиляции.
1.2.2 Классификация систем кондиционирования воздуха.
1.3 Требования к системам вентиляции и кондиционирования воздуха
1.4 Естественная вентиляция
1.5 Механическая вентиляция
1.6 Основные требования к вентиляционным установкам

Файлы: 7 файлов

Конспект лекций по дисциплине ПВ и КВ_2007 Титул и литерат.doc

— 41.50 Кб (Просмотреть файл, Скачать файл)

Раздел 1_ ПВ и КВ_2007.doc

— 225.50 Кб (Просмотреть файл, Скачать файл)

Раздел 2 ПВ и КВ 2007 год.doc

— 880.50 Кб (Просмотреть файл, Скачать файл)

Раздел 3 ПВ и КВ_2007 год.doc

— 62.00 Кб (Просмотреть файл, Скачать файл)

Раздел 4 ПВ и КВ_2007 год.doc

— 253.00 Кб (Скачать файл)

Количество  тепла, поглощаемого испарителем

  Участок НВ-НС соответствует изменению теплосодержания хладагента в испарителе и характеризует количество тепла, поглощаемого испарителем.

Реальный  цикл охлаждения

       В действительности в результате  потерь давления, возникающих на линии всасывания и нагнетания, а также в клапанах компрессора, цикл охлаждения отображается на диаграмме несколько иным образом (см. рис. 4.3)

       Из-за  потерь давления на входе (участок C-L) компрессор должен производить всасывание при давлении ниже давления испарения.

       С другой стороны, из-за потерь давления на выходе (участок M-D') компрессор должен сжимать парообразный хладагент до давлений выше давления конденсации. Необходимость компенсации потерь увеличивает работу сжатия и снижает эффективность цикла. Помимо потерь давления в трубопроводах и клапанах, на отклонение реального цикла от теоретического влияют также потери в процессе сжатия.

  Во-первых, процесс сжатия в компрессоре отличается от адиабатического. Поэтому реальная работа сжатия оказывается выше теоретической, что также ведет к энергетическим потерям.

  Во-вторых, в компрессоре имеются чисто механические потери, приводящие к увеличению потребной мощности электродвигателя компрессора и увеличению работы сжатия.

  В третьих, из-за того, что давление в цилиндре компрессора в конце цикла всасывания всегда ниже давления пара перед компрессором (давления испарения), также уменьшается производительность компрессора. Кроме того, в компрессоре всегда имеется объем, не участвующий в процессе сжатия, например, объем под головкой цилиндра.

Оценка  эффективности цикла охлаждения

  Эффективность  цикла охлаждения обычно оценивается коэффициентом полезного действия или коэффициентом термической (термодинамической) эффективности.

       Коэффициент  эффективности может быть вычислен как соотношение изменения теплосодержания хладагента в испарителе (НС-НВ) к изменению теплосодержания хладагента в процессе сжатия (HD-HC).

  Фактически  он представляет собой соотношение холодильной мощности и электрической мощности, потребляемой компрессором.

  Причем он не  является показателем производительности холодильной машины, а представляет собой сравнительный параметр при оценке эффективности процесса передачи энергии. Так, например, если холодильная машина имеет коэффициент термической эффективности, равный 2,5, то это означает, что на каждую единицу электроэнергии, потребляемой холодильной машиной, производится 2,5 единицы холода.

 

4.1.3. Основные элементы холодильной машины.

1. Компрессор.

       Компрессор всасывает парообразный  хладагент, поступающий от испарителя при низкой температуре и низком давлении, производит его сжатие, повышая давление и температуру, и направляет затем к конденсатору. В зависимости от условий работы холодильной машины, давление паров хладагента на выходе компрессора может составлять 15-25 атм, а температура 70-90 °С.

  Важной характеристикой  компрессора является степень сжатия и объем хладагента, который нагнетается компрессором. Степень сжатия определяется как отношение максимального давления на выходе компрессора к максимальному давлению на входе.

  По своему конструктивному исполнению компрессоры, используемые в холодильных машинах, могут быть разделены на две основные категории:

  • поршневые;
  • ротационные;
  • спиральные;
  • винтовые.

 

       Принципиальное  отличие ротационных, спиральных и винтовых компрессоров от поршневых заключается в том, что всасывание и сжатие хладагента осуществляется не за счет возвратно-поступательного движения поршней в цилиндрах, а за счет вращательного движения рабочих органов, соответственно пластин, спиралей и винтов.

 

Компрессоры поршневые

  Наибольшее  распространение получили поршневые компрессоры. Схема работы такого компрессора показана на рис. 4.4.

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 4.4, а,б. Схема работы поршневого компрессора:

1 – выпускной клапан; 2 – линия нагнетания к конденсатору; 3 – поршень; 4 – цилиндр; 5 – коленчатый вал; 7 – давление нагнетания; 8 – давление в цилиндре; 9 – давление всасывания; 10 – головка клапанов; 11 – линия всасывания от испарителя; 12 – выпускной клапан.

 

  Сжатие  газа обеспечивается поршнем  (3) при его движении вверх по цилиндру (4). Перемещение поршня обеспечивается электродвигателем через коленчатый вал (6) и шатун (5). Всасывающие и выпускные клапаны открываются и закрываются под действием давления газа. Фаза всасывания хладагента показана на рис. 4.4, а. Поршень (3) начинает опускаться в цилиндре (4) от верхней т.н. «мертвой точки». При движении поршня вниз, над поршнем создается разрежение и парообразный хладагент через открытый впускной клапан (10) всасывается в цилиндр.

  Фаза сжатия  и выпуска разогретого пара высокого давления показана на рис. 4.4, 6. Поршень двигается в цилиндре вверх и сжимает пар. Выпускной клапан (1) открывается, и пар под давлением выходит из компрессора. Конструкция цилиндра такова, что поршень никогда не касается головки клапанов (10), всегда оставляя некоторое свободное пространство, называемое «мертвым объемом».

 

 Поршневые комрессоры  производятся в различных модификациях. В зависимости от типа конструкции и от типа электродвигателя различают компрессоры:

  • герметичные;
  • полугерметичные;
  • открытые.

 

        В герметичных комрессорах электродвигатель  и компрессор расположены в единов герметичном корпусе. Мощность таких компрессоров может составлять 1,7-35 кВт. Они широко используются в холодильных машинах малой и средней мощности. Типовой герметичный компрессор показан  на рис. 4.4, в.

 

Рис. 4.4, в. Типовой герметичный компрессор

 

        В полугерметичных компрессорах  электродвигатель и компрессор  закрыты, соединены напрямую и расположены по горизонтали в едином разборном контейнере. Эти компрессора производятся в широкой гамме мощностей от 30 до 300 кВт. В случае повреждения можно вынимать электродвигатель, получая доступ к клапанам, поршню, шатунам и другим поврежденным частям.

  Они широко применяются  в холодильных машинах средней и средне-большой мощности (рис. 4.4, г).

 

 

Рис. 4.4, г. Полугерметичный компрессор

     

       В  открытых компрессорах электродвигатель  расположен снаружи (вал с соответствующими  сальниками выведен за пределы  корпуса). Соединение электродвигателя с компрессором может быть прямым (в линию) либо через трансмиссию.

       Охлаждение  электродвигателя герметичных и  полугерметичных компрессоров производится самим же всасываемым хладагентом. Регулирование мощности холодильной установки может выполняться как в режиме «пуск-остановка», так и с плавной регулировкой скорости вращения компрессора, с использованием специальных устройств, называемых инверторами. В полугерметичных компрессорах регулирование мощности может обеспечиваться также перепуском газа с выхода на вход либо закрытием всасывающего клапана одного или нескольких цилиндров. Для привода компрессора используются, в зависимости от мощности, однофазные с конденсаторным пуском или трехфазные электродвигатели.

       Основным  недостатком поршневого компрессора является наличие пульсаций давления паров хладагента на выходе из компрессора, а также большие пусковые нагрузки. Поэтому электродвигатель должен иметь запас мощности для пуска компрессора и иметь акустическую защиту для снижения уровня шума.

 

2. Конденсатор.

       Конденсатор представляет собой  теплообменный аппарат, который передает тепловую энергию от хладагента к окружающей среде, чаще всего воде или воздуху. Тепловая энергия, передаваемая хладагентом через конденсатор, складывается из:

  • тепла, поглощенного испарителем холодильного контура, и
  • тепла, вырабатываемого компрессором при сжатии хладагента.

       Тепло, выделяемое конденсатором,  примерно равно холодопроизводительности холодильной машины, увеличенной на 30-35%. Так, для холодильной машины мощностью 10 кВт общий объем тепла, выделяемый конденсатором, составляет около 13-13,5 кВт.

       Выделяемое  тепло отводится окружающим воздухом (конденсаторы с воздушным охлаждением) или жидкостью (конденсаторы с водяным охлаждением).

 

Конденсаторы  с воздушным охлаждением

       Наибольшее  распространение получили конденсаторы  с воздушным охлаждением. Они состоят из теплообменника и блока вентилятора с электродвигателем.

  Теплообменник обычно  изготавливается из медных трубок диаметром 6 мм и 19 мм, как правило, с оребрением. Расстояние между ребрами обычно составляет 1,5-3 мм. Медь легко поддается обработке, не подвержена окислению и имеет высокие показатели теплопроводности. Выбор диаметра трубок зависит от большого количества факторов: легкости обработки, потерь давления в линии хладагента, потерь давления со стороны охлаждающей воздушной среды и т.д. В настоящее время наблюдается тенденция использования трубок малого диаметра.

       Оребрение  трубок теплообменника чаще всего  изготавливают из алюминия. Причем тип оребрения, его профиль и конфигурация могут быть весьма разнообразны и существенно влиять на тепловые и гидравлические характеристики теплообменника.

  Так, например, использование сложного профиля оребрения с просечками, выступами и т.п. позволяет создать большую турбулентность воздуха вблизи поверхности ребра. Тем самым повышается эффективность теплопередачи между хладагентом, проходящим по трубкам, и внешним воздухом. Хотя в этом случае несколько увеличивается гидравлическое сопротивление, что потребует установки вентилятора большей мощности, достигается существенное повышение производительности холодильной машины с лихвой оправдывает увеличенную энергоемкость установки.

       Соединение трубки с ребрами  может быть выполнено двумя способами:

       ◘ либо в ребре просто делается  отверстие для непосредственного контакта с трубкой;

       ◘ либо в месте подсоединения  ребра к трубке делается воротничок (буртик), повышаю щий поверхность теплообмена

       Преимущество  первого варианта состоит в простоте (экономичности) производства, однако, в связи с неплотным контактом ребра с трубкой, передача тепла внешней среде ограничена.

       Кроме  того, при работе в загрязненной либо агрессивной атмосфере по контуру прилегания ребер к трубке может появиться коррозия. Это значительно снижает полезную поверхность теплообмена, приводит к снижению производительности и повышению температуры конденсации.

       Скорость  воздушного потока, проходящего  через теплообменник, обычно составляет от 1,0 до 3,5 м/с.

       Внутренняя  поверхность трубок также может  быть рифлённой, что позволяет обеспечить большую турбуленьность, а следовательно, теплоотдачу хладагента.

       Конденсаторы  обычно имеют один или несколько  рядов трубок (чаще всего  до 4-х), расположенных в направлении прохождения потока охлаждающего воздуха. Трубки могут располагаться на одном уровне либо ступенями (в шахматном порядке) для повышения эффективности теплообмена (рис. 4.5).

      

 



 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

Рис. 4.5. Схема конденсатора с воздушным охлаждением:

1 – медная трубка; 2 - оребрение

      

       Важным  аспектом является схема движения  рабочих средств в теплообменнике. Горячий хладагент поступает в конденсатор сверху и постепенно опускается вниз. В верхней части теплообменника происходит наиболее интенсивное охлаждение хладагента, для чего используется примерно 5% полезной площади теплообменника.

       На  этом начальном участке теплообменника теплопередача весьма значительна, благодаря большому перепаду температур между хладагентом и холодным воздухом и высокому коэффициенту теплопередачи, обусловленному высокой скоростью движения хладагента.

       На следующем основном участке  охлаждения, составляющем около 85% всей полезной поверхности теплообменника, процесс конденсации парообразного фреона проходит при почти неизменной температуре.

       Остающиеся 10% полезной поверхности теплообмена используются для «дополнительного охлаждения» хладагента. Количество отводимого в этой зоне тепла составляет примерно 5% общего показателя теплообмена, что связано с небольшим перепадом температур между хладагентом, перешедшим в жидкую фазу, и продувочным воздухом.

Раздел 5 ПВ и КВ 2007 год.doc

— 849.50 Кб (Просмотреть файл, Скачать файл)

Содержание дисциплины ПВ и КВ_2007.doc

— 27.00 Кб (Просмотреть файл, Скачать файл)

Информация о работе Лекции по “Промышленная вентиляция и кондиционирование воздуха ”