Автор работы: Пользователь скрыл имя, 02 Октября 2012 в 16:35, курс лекций
Раздел 1. Вентиляция на объектах промышленных предприятий
1.1 Санитарно-гигиеническое нормирование параметров атмосферного воздуха
1.2 Системы вентиляции и кондиционирования воздуха.
1.2.1 Классификация систем вентиляции.
1.2.2 Классификация систем кондиционирования воздуха.
1.3 Требования к системам вентиляции и кондиционирования воздуха
1.4 Естественная вентиляция
1.5 Механическая вентиляция
1.6 Основные требования к вентиляционным установкам
4.1.4. Работа холодильной машины в режиме теплового насоса
Как видно из схемы холодильного цикла, в кондиционере идет как бы перекачка тепла из помещения, в котором установлен испаритель, в окружающее пространство, как правило на улицу, где установлен конденсатор. Из испарителя всегда выходит более холодный воздух, а из конденсатора — более теплый.
Если поменять
местами конденсатор и
Схема холодильного контура, способного работать как в режиме охлаждения, так и в режиме «теплового насоса», показана на рис. 4.9.
В режиме охлаждения (рис. 4.9, а) пары хладагента с выхода компрессора (1) четырехходовым клапаном (2) направляются в теплообменник наружного блока (8), где конденсируются. Через обратный клапан (3) и ресивер (4) жидкий фреон с высоким давлением попадает на терморегулирующий вентиль (6). Терморегулирующий вентиль (9) и обратный клапан (6) при этом закрыты. Из ТРВ (5) жидкий хладагент поступает к теплообменнику внутреннего блока (7), где испаряется и через четырехходовой клапан (2) поступает на вход компрессора (1).
Рис. 4.9. Схема реверсивного холодильного цикла:
1 – компрессор; 2 – четырёхходовой клапан; 3,6 – обратный клапан; 4 – ресивер; 5,9 – терморегулирующий вентиль; 7,8 – теплообменник внутренненго блока
В режиме обогрева (рис. 4.9, б) пары хладагента четырехходовым клапаном (2) направляются в теплообменник внутреннего блока (7), выполняющего роль конденсатора. Через обратный клапан (6) и ресивер (4) жидкий фреон с высоким давлением попадает на терморегулирующий вентиль (9). Терморегулирующий вентиль (5) и обратный клапан (3) при этом закрыты.
Рис. 4.10.
Рис. 4.11.
Реверсирование цикла производится четырехходовым клапаном (2).
Схема работы четырехходового клапана в разных режимах показана на рис. 4.10 и 4.11.
В
режиме охлаждения (см. рис. 4.10) обмотка
клапана обесточена и управляющ
В режиме обогрева (см. рис. 4.11) электропитание подается на обмотку клапана и управляющий клапан соединяет правую полость поршня с линией всасывания перед компрессором. Поршень перемещается вправо и соединяет выход компрессора с теплообменником внутреннего блока, а вход — с теплообменником внешнего блока.
Таким образом, для обеспечения возможности работы кондиционера в режиме теплового насоса необходимо выполнить следующие мероприятия:
Эффективность
работы кондиционера в режиме
обогрева оценивается отношение
Аналогично режиму охлаждения, значение коэффициента эффективности кондиционера в режиме обогрева определяется как отношение тепловой мощности к электрической мощности компрессора, а также других вспомогательных элементов кондиционера.
4.1.5. Работа кондиционера при низкой температуре окружающего воздуха.
Как правило воздушный конденсатор холодильной машины эксплуатируется в атмосферных условиях (на открытой площадке).
Работа
холодильной машины при низких
1. Уменьшение холодопроизводительности в режиме охлаждения
Из-за снижения
температуры воздуха, обдувающе
В результате уменьшения расхода хладагента падает давление испарения и возможно отключение кондиционера при срабатывании устройств защиты по низкому давлению.
Особенно
заметно снижение расхода
В кондиционерах, оборудованных терморегулирующим вентилем, открытие ТРВ до какого-то момента компенсирует падение давления конденсации, но после того, как ТРВ откроется полностью, эффект будет таким же, как и в случае с капиллярной трубкой.
Для увеличения давления конденсации при низкой температуре наружного воздуха принимаются следующие технические меры:
Эффективной
мерой сохранения холодопроизво
2. Уменьшение
теплопроизводительности в
В
режиме обогрева происходит
При низкой температуре наружного воздуха уменьшается перепад между температурой кипящего хладагента и температурой окружающего воздуха. Количество передаваемого тепла, необходимого для кипения хладагента, уменьшается и соответственно ухудшаются условия кипения хладагента.
Как следствие, снижается давление всасывания, падает производительность компрессора. Одновременно снижаются давление и температура конденсации, что приводит к уменьшению теплопроизводительности кондиционера.
В этих
условиях необходимо максимальн
Обычно это достигается увеличением скорости вращения вентилятора наружного блока.
По мере приближения температуры наружного воздуха к температуре кипения хладагента теплопроизводительность кондиционера снижается и при достижении минус 20-22 °С составляет 20-25%.
3. Обмерзание теплообменника
При
работе кондиционера в режиме
обогрева происходит
При определенном соотношении температурных и влажностных параметров атмосферного воздуха возможно появление конденсата на пластинах теплообменника наружного блока, образование льда и обмерзание теплообменника. В ряде случаев возможно образование льда и обмерзание теплообменника.
Образовавшийся лед
не только ухудшает характерист
Поэтому предотвращению
Для удаления льда
и снеговой шубы с теплообменни
Алгоритм системы оттайки должен быть построен таким образом, чтобы, с одной стороны, — режим оттаивания включался как можно реже и на минимальное время, с другой стороны, чтобы не возникало накопление льда на теплообменнике.
4. Возможность повреждения компрессора при пуске.
При
низких температурах наружного
воздуха жидкий хладагент
Во время пуска поршневого компрессора при движении поршня вверх в картере возникает разрежение и может происходить вскипание хладагента. Одновременно вспенивается масло и происходит его выброс в выходной трубопровод.
Для исключения этого на компрессорах средней и большой мощности обязательно устанавливаются обогреватели картера, предотвращающие накопление жидкого хладагента в масле при выключенном компрессоре.
В компрессорах роторного типа, не имеющего масляного картера, эта проблема менее остра, чем в поршневых компрессорах. Поэтому на компрессорах SCROLL малой мощности (примерно до 8-10 кВт) отсутствие обогревателя картера практически не влияет на работоспособность компрессора.
5. Опасность попадания жидкого хладагента в компрессор при работе в режиме обогрева.
Ухудшение условий кипения хладагента в теплообменнике наружного блока при работе кондиционера в режиме охлаждения может привести к «проскоку» жидкого хладагента и попаданию его в компрессор.
Возникающий при этом гидравлический удар может повредить компрессор.
В связи с этим приходится устанавливать дополнительный ресивер (отделитель жидкости) перед компрессором на линии всасывания.
4.1.6. Основные сведения о хладагентах.
Наиболее важными
В практике
холодильной техники применяютс
К первым относятся хладагенты типа R-11,R-12, R-500 и R-502. Ко вторым — R-22.
В прошедшие годы выяснилось, что перечисленные хладагенты при утечке в атмосферу вредно влияют на озоновый слой, защищающий землю от ультрафиолетовых солнечных лучей. Кроме того, подтвердились данные о влиянии их на увеличение парникового эффекта в атмосфере Земли (так называемые «парниковые газы»).
Информация о работе Лекции по “Промышленная вентиляция и кондиционирование воздуха ”