Шпаргалка по "Безопасности Республики Беларусии"

Автор работы: Пользователь скрыл имя, 26 Ноября 2012 в 11:25, шпаргалка

Описание работы

Работа содержит ответы на вопросы по дисциплине "Безопасности Республики Беларусии".

Файлы: 1 файл

ЧС.doc

— 473.00 Кб (Скачать файл)

Из молока в сливки стронция-90 переходит  только 5 % , в творог — 27, в сыры — 45 %. Цезий-137 переходит в масло, сметану, сыр и творог в количествах соответственно 1,5; 9; 10 и 21 % . Очень низкое содержание радионуклидов в масле, особенно топленом.

Переработка мясопродуктов также  сопровождается снижением содержания радионуклидов в исходном продукте. При варке костей переход радионуклидов в бульон составляет для стронция-90 — 0,04 %, цезия — 67,0 %; выварка радионуклидов из мяса — 51—90 %; предварительное вымачивание мелко нарезанного мяса в воде или 0,85% -ном растворе поваренной соли обеспечивает удаление из мяса 20—60 % находящегося в нем цезия-137. При перетопке сала из него в шквару переходит до 95 % радиоцезия.

Так как перечисленные защитные мероприятия проводились на загрязненных территориях не в полном объеме и не всегда своевременно, то по состоянию на 1 января 1994 года площадь загрязненных сельхозугодий радиоактивным цезием плотностью более 1 Ки/км2 составила 1363 тыс. га, или 17,5 % от общей площади. Если также учесть 256,2 тыс. га, списанных в 1986—1990 годах, а также 72 тыс. га земель, оставшихся в зоне отселения, то количество земель, загрязненных цези-ем-137, возросло по сравнению с 1987 годом на 68,15 тыс. га, из них в Минской области — на 37,7 тыс. га и в Гродненской — на 30,45 тыс. га.

Главная причина — "размывание" радиоактивных пятен, перенос "радиоактивной" грязи. Так, за 8 лет площадь земель, которые имеют плотность загрязнения от 1 до 5 Ки/км2, возросла на 25,6 тыс. га, с плотностью от 5 до 15 Ки/км2 — на 62 тыс. га. Несмотря на списание более чем 250 тыс. га земель, в сельскохозяйственном использовании осталось 63 тыс. га с концентрацией цезия-137 от 15 до 40 Ки/км2 и 2,6 тыс. га — с концентрацией более 40 Ки/км2. На этих землях получить чистую продукцию невозможно, что подтвердили исследования, проведенные научными учреждениями. Земли должны быть выведены из использования.

Мониторинг по степени загрязнения  сельхозугодий радиоактивным стронцием не проводился с 1987 года, поэтому загрязненными считаются около 475 тыс. га земель, в том числе от 3 Ки/км2 и выше, где невозможна никакая деятельность, — свыше 20 тыс. га. Вместе с тем есть косвенные данные, что загрязненных стронцием земель значительно больше. Например, в пробах мяса, взятых в Сморгонском районе, содержалось стронция от 0,338 до 0,442 мг/кг сухого вещества. Появление стронция в чистых зонах связано, вероятно, с техногенным переносом. За периоде 1986 по 1994 год было получено около 900 тыс. т загрязненного зерна, которое перерабатывалось и на заводах, расположенных в чистых зонах.

За этот же период было скормлено  в виде комбикормов около 50 тыс. т радиоактивных костей. С навозом радионуклиды попадали в почву вокруг крупных животноводческих комплексов и птицефабрик, расширяя загрязненную территорию.

Кроме радиоизотопов цезия-137 и  стронция-90 в почвах Беларуси находят  еще 10 радионуклидов, например плуто-ний-239, церий-144, рутений-106, сурьму-125, европий-154 и 155, кобальт-60, серебро-110.

Большие площади загрязненных земель обусловили значительные объемы производства загрязненных кормов. Следует отметить, что контролировалась не вся продукция и не по всем изотопам, а только по цезию-137. Если за последние два года загрязненного зерна и картофеля не фиксировалось, то количество "грязного" сена, силоса, заготовленного в общественных хозяйствах, было значительным. В 1994 году такого сена было заготовлено 2,6 тыс. т, силоса — более 45 тыс. т. У населения корма практически не проверялись, хотя заготавливались они на загрязненных территориях.

Принципы повышения  безопасности проживания в районах радиоактивного загрязнения:

1. Сокращение времени воздействия на организм внешнего у- облучения.

2.  Предотвращение попадания  РВ внутрь организма.

3.  Принятие мер к выведению  РВ из организма.

4. Общепринятые мероприятия по  укреплению здоровья.

5.  Лечение хронических заболеваний,  течение которых затрудняется из-за воздействия радиоактивного облучения.

6.  Систематический контроль  состояния здоровья.

9. Основные дозиметрические величины и единицы их измерения

 

Количественную характеристику излучения, обычно называемую дозой, измеряют в величинах энергии, поглощенной тканями. Термин "доза облучения" не слишком удачный, поскольку первоначально он относился к дозе лекарственного препарата, т.е. дозе, идущей на пользу, а не во вред организму. Дозу излучения организм может получить от любого радионуклида или их смеси, независимо от того, находятся они вне организма или внутри него (в результате попадания с пищей, водой или воздухом).

Для энергетической характеристики излучений  принята экспозиционная доза. Она оценивается по эффекту ионизации сухого атмосферного воздуха. За единицу экспозиционной дозы рентгеновского или гамма-излучения принимается кулон на килограмм (Кл/кг). Это доза рентгеновского или гамма-излучения, которая при полном использовании ионизирующей способности создает в воздухе массой один килограмм сумму электрических зарядов ионов данного одного знака, равную одному кулону (кулон равен количеству электричества, проходящего через поперечное сечение при токе 1 А за 1 с).

Внесистемной единицей экспозиционной дозы рентгеновского и гамма-излучения является рентген (Р). Рентген — это такая доза рентгеновского или гамма-излучения, которая при нормальных условиях (давлении 105 Па и температуре 0 °С) в 1 см3 сухого воздуха образует более двух миллиардов пар ионов (2,08109).

Производные единицы: миллирентген (мР) = 0,001 Р; микрорентген (мкР) = 0,000001 Р; 1 Кл/кг - 3876 Р.

Экспозиционная доза характеризует  потенциальную опасность воздействия  проникающей радиации при общем  и равномерном облучении тела человека. Именно с измерения количества излучения в воздухе и начиналась собственно дозиметрия, когда по дозе в воздухе судили о дозе облучения человека, находящегося в этой же точке пространства. В настоящее время рентген используется для измерения мощности экспозиционной дозы.

Мощность экспозиционной дозы — это экспозиционная доза, отнесенная к единице времени. Единицей ее является ампер на килограмм (А/кг) — мощность экспозиционной дозы излучения, при которой экспозиционная доза за 1 с возрастает на 1 Кл/кг.

Внесистемные единицы — Р/ч; Р/мин; Р/с; мР/ч; мкР/ч.

Уровень радиации — мощность дозы излучения, измеренная на высоте 1 м от поверхности земли. Уровень радиации показывает дозу облучения, которую может получить человек за единицу времени.

Степень, глубина и форма лучевых  поражений, развивающихся среди биологических объектов при воздействии на них ионизирующей  радиации, в первую очередь зависят от величин поглощенной энергии излучения. Для характеристики этого показателя используется понятие поглощенной дозы — дозы любого ионизирующего излучения, поглощенной единицей массы облученного вещества. За единицу поглощенной дозы принят 1 грей (Гр). Эта единица названа так в честь английского физика и радиобиолога Л. Грея и соответствует 1 Дж/кг. Один грей равен поглощенной дозе излучения, соответствующей энергии 1 Дж ионизирующего излучения любого вида, переданной облученному веществу массой 1кг.

Производные единицы: миллигрей (мГр) = 0,001 Гр; микрогрей (мкГр) - 0,000001 Гр.

В радиобиологии и радиационной гигиене широкое применение получила внесистемная единица поглощенной дозы — рад (радиационная адсорбированная доза). Рад равен поглощенной дозе ионизирующего излучения, при которой веществу массой 1 г передается энергия ионизирующего излучения, равная 100 эрг.

Производными  данной  единицы   являются   миллирад (мрад),   равный  0,001   рад,  и микрорад  (мкрад),  равный

0,000001 рад.

1 Гр = 100 рад; 1 Р = 0,95 рад = 1 рад.

Поглощенные дозы излучений различных  типов вызывают неравнозначный биологический эффект. При одинаковой поглощенной дозе а-излучения гораздо опаснее бета- и гамма-излучения. Если принять во внимание этот факт, то поглощенную дозу следует умножить на коэффициент, отражающий способность излучения данного вида повреждать ткани организма (коэффициент качества излучения — К): 20 — для альфа частиц, 10 — для протонов и нейтронов, 1 — для бета-частиц, рентгеновского и гамма-излучений.

Пересчитанную таким образом дозу называют эквивалентной дозой. В системе СИ ее измеряют в единицах, называемых зивертами (Зв), названных в честь известного шведского ученого Зиверта, внесшего видный вклад в методологию количественного измерения радиации.Зиверт— единица эквивалентной дозы смешанного излучения, равная 1 Дж/кг или 100 бэр. 1 Зв = 1 Дж/кг =100 бэр. Производные единицы: миллизиверт (мЗв) = 0,001 Зв; микрозиверт (мкЗв) = 0,000001 Зв.

Внесистемная единица — бэр (биологический эквивалент рентгена). Это доза любого ионизирующего излучения, поражающее действие которой эквивалентно дозе 1P: 1P = 1бэр.

Производные единицы — мбэр, мкбэр.

При оценке поражающего действия ионизирующих излучений следует учитывать также, что разные органы и ткани обладают разной радиочувствительностью. Коэффициенты радиационного риска (КР): все тело —1; половые железы — 0,25; молочные железы — 0,15; красный костный мозг — 0,12; легкие — 0,12; щитовидная железа — 0,03; костная ткань — 0,03; другие ткани — 0,30.

Умножив эквивалентные дозы на соответствующие  коэффициенты радиационного риска и просуммировав их по всем органам и тканям, получим эффективную эквивалентную дозу, которая также измеряется в зивертах (СИ) и бэрах (внесистемная единица).

Эти понятия характеризуют только индивидуально получаемые дозы. Просуммировав индивидуальные эффективные эквивалентные дозы, полученные группой людей, мы придем к коллективной эффективной эквивалентной дозе, которая измеряется в человеко-зивертах (чел./Зв) или человеко-бэрах (чел./бэр).

Коллективную дозу можно рассчитать для отдельного поселка, района, области, республики, континента. Таким образом, коллективная доза — объективная оценка масштаба радиационного поражения.

Например, расчеты, проведенные после  аварии на ЧАЭС, показали, что дозовая  нагрузка только от радионуклида цезия-137 на население Скандинавских стран  и стран Центральной Европы в течение первого года после аварии составила 8-104 чел./Зв. За этот период доза, полученная населением СССР, проживавшим на загрязненных территориях,

достигла 2-105 чел./Зв.

Поскольку многие радионуклиды распадаются  очень медленно и останутся радиоактивными в отдаленном будущем, следует ввести еще одно определение — коллективную эффективную эквивалентную дозу, которую получат многие поколения людей (в популяции области, республики, страны, всего населения Земли) от какого-либо радиоактивного источника за все время его дальнейшего существования. Ее называют ожидаемой (полной) коллективной эффективной эквивалентной дозой. Единицы измерения будут такими же, как и для коллективной эффективной эквивалентной дозы, т.е. человеко-зиверт (человеко-бэр). Например, по оценке НК ДАР ООН, ожидаемая (полная) коллективная эффективная эквивалентная доза в результате аварии на ЧАЭС оценивается в 6,2-105 чел./Зв.

Ожидаемую дозу рассчитывать весьма сложно. Необходимо рассчитать, какую дозу облучения получит организм за предстоящий год, 10 лет или в течение всей жизни. Расчет дозы должен учитывать радионуклидный состав выброса, их долю в общей радиоактивности, периоды полураспада радионуклидов, пути поступления и способность накапливаться в органах и тканях и выводиться из организма, время полувыведения, особенности рациона питания, загрязненность продуктов, долю внешнего облучения и множество других факторов. Поэтому расчет дозовой нагрузки, например, за 70 предстоящих лет (так называемая "доза за жизнь") требует весьма высокой квалификации специалиста и досконального знания им радиационной обстановки в каждом конкретном населенном пункте. В результате аварии на ЧАЭС произошло загрязнение значительной территории радионуклидами сложного изотопного состава. Оценка ожидаемой коллективной дозы с учетом распадающихся радионуклидов важна для прогнозирования неблагоприятных последствий для живущих и будущих поколений и служит ориентиром для принятия решений.

Такая иерархия понятий доз облучения  на первый взгляд может показаться слишком сложной, но тем не менее она представляет собой логически последовательную систему и позволяет рассчитывать согласующиеся или сопоставимые друг с другом дозы облучения. При дальнейшем изучении проблем радиационной защиты населения без этих понятий никогда не удастся достичь необходимой точности и ясности изложения.


Информация о работе Шпаргалка по "Безопасности Республики Беларусии"