Шпаргалка по "Философии"

Автор работы: Пользователь скрыл имя, 25 Ноября 2015 в 22:59, шпаргалка

Описание работы

Предмет, задачи и особенности философии науки.
Эволюция философских подходов к анализу науки в истории философской мысли.
Позитивизм как философия науки: основные этапы становления и развития.
Аналитическая философия науки.
Феноменология (Э. Гуссерль): критика европейской науки.
Философия науки М. Хайдеггера. Хайдеггер М. «О сущности истины».
Герменевтическая школа модель философии науки.
Критическая школа философии науки.

Файлы: 1 файл

60_otvetov_na_voprosy_kandidatskogo_ekzamena_po_filosofii_na.doc

— 947.00 Кб (Скачать файл)

2 Неклассический этап.

Неклассическое естествознание (конец XIX - середина XX в.в.) способствовало значительному расширению поля исследуемых объектов, открывая пути к освоению больших, сложных саморегулирующихся систем. Неклассический тип рациональности учитывает связи между знаниями об объекте и характером средств и операций деятельности, рассматривая объект как вплетенный в человеческую деятельность.

В XIX в. стало очевидным, что законы ньютоновской механики уже не могли играть роли универсальных законов природы. На эту роль стали претендовать законы электромагнитных явлений. Однако в результате новых экспериментальных открытий в области строения вещества в конце XIX — начале XX в. обнаруживалось множество непримиримых противоречий между электромагнитной картиной мира и опытными фактами. Это подтвердил в дальнейшем целый «каскад» научных открытий.

Так с 1895 по 1897 гг. были открыты лучи Рентгена, радиоактивность, радий, первая элементарная частица — электрон. В 1900 г. немецкий физик Макс Планк ввел квант действия (постоянная Планка) и, исходя из идеи квантов, вывел закон излучения, названный его именем. Квантовая теория Планка вошла в противоречие с теорией электродинамики Максвелла. Возникли два несовместимых представления о материи: или она абсолютно непрерывна, или она состоит из дискретных частиц.

В 1911 г. английский физик Эрнест Резерфорд предложил планетарную модель атома. Затем в 1913 г. Нильс Бор, предложивший на базе идеи Резерфорда и квантовой теории Планка свою модель атома.

Весьма ощутимый «подрыв» классического естествознания был осуществлен затем Альбертом Эйнштейном, создавшим сначала, в 1905 г. специальную, а позднее, в 1916 г. и общую теорию относительности. В 1924 г. было сделано ещё одно крупное научное открытие: французский физик Луи де Бройль высказал гипотезу о том, что частице материи присущи и свойства волны (непрерывность) и дискретность (квантовость). Вскоре, уже в 25—30 гг. ХХ в. эта гипотеза была подтверждена экспериментально в работах Шредингера, Гейзенберга, Борна и других физиков. Таким образом, был открыт важнейший закон природы, согласно которому все материальные микрообъекты обладают как корпускулярными, так и волновыми свойствами.

В этот период происходит сближение объекта и субъекта познания. Становится очевидной зависимость знания от применяемых субъектом методов и средств получения этого знания.

3 Постнеклассический этап

В современную эпоху происходят новые радикальные изменения в основаниях науки. Эти изменения можно охарактеризовать как четвертую глобальную научную революцию, в ходе которой рождается новая постнеклассическая наука. Интенсивное применение научных знаний практически во всех сферах социальной жизни, изменение самого характера научной деятельности, связанное с революцией в средствах хранения и получения знаний (компьютеризация науки, появление сложных и дорогостоящих приборных комплексов, которые обслуживают исследовательские коллективы и функционируют аналогично средствам промышленного производства и т.д.) меняет характер научной деятельности. Наряду с дисциплинарными исследованиями на передний план все более выдвигаются междисциплинарные и проблемно-ориентированные формы исследовательской деятельности. Если классическая наука была ориентирована на постижение все более сужающегося, изолированного фрагмента действительности, выступавшего в качестве предмета той или иной научной дисциплины, то специфику современной науки конца XX – начала XXI века определяют комплексные исследовательские программы, в которых принимают участие специалисты различных областей знания. Например, идеи синергетики, вызывающие переворот в системе наших представлений о природе, возникали и разрабатывались в ходе многочисленных прикладных исследований, выявивших эффекты фазовых переходов и образования диссипативных структур (структуры в жидкостях, химические волны, лазерные пучки, неустойчивости плазмы, явления выхлопа и флаттера).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26. Особенности современной постнеклассической  науки.

 

Постнеклассическая наука формируется в 70-х годах XX в. Этому способствуют революция в хранении и получении знаний (компьютеризация науки), невозможность решить ряд научных задач без комплексного использования знаний различных научных дисциплин, без учета места и роли человека в исследуемых системах. Так, в это время развиваются генные технологии, основанные на методах молекулярной биологии и генетики, которые направлены на конструирование новых, ранее в природе не существовавших генов. На их основе, уже на первых этапах исследования, были получены искусственным путем инсулин, интерферон (защитный белок) и т.д. Основная цель генных технологий - видоизменение ДНК. Работа в этом направлении привела к разработке методов анализа генов и геномов (совокупность генов, содержащихся в одинарном наборе хромосом), а также их синтеза, т.е. конструирование новых генетически модифицированных организмов. Разработан принципиально новый метод, приведший к бурному развитию микробиологии - клонирование.

  Внесение  эволюционных идей в область  химических исследований привело к формированию нового научного направления - эволюционной химии. Так, на основе ее открытий, в частности разработки концепции саморазвития открытых каталитических систем, стало возможным объяснение самопроизвольного (без вмешательства человека) восхождения от низших химических систем к высшим. Наметилось еще большее усиление математизации естествознания, что повлекло увеличение уровня его абстрактности и сложности.

  Развитие вычислительной техники  связано с созданием микропроцессоров, которые были положены также в основание создания станков с программным управлением, промышленных роботов, для создания автоматизированных рабочих мест, автоматических систем управления.

  Прогресс  в 80 - 90-х гг. XX в. развития вычислительной  техники был вызван созданием искусственных нейронных сетей, на основе которых разрабатываются и создаются нейрокомпьютеры, обладающие возможностью самообучения в ходе решения наиболее сложных задач. Большой шаг вперед сделан в области решения качественных задач.

На базе фундаментальных знаний быстро развиваются сформированные в недрах физики микроэлектроника и наноэлектроника.

что все чаще объектами исследования становятся сложные, уникальные, исторически развивающиеся системы, которые характеризуются открытостью и саморазвитием. Среди них такие природные комплексы, в которые включен и сам человек - так называемые "человекоразмерные комплексы"; медико-биологические, экологические, биотехнологические объекты, системы "человек-машина", которые включают в себя информационные системы и системы искусственного интеллекта и т.д. Поэтому не случайно на этапе постнеклассической науки преобладающей становится идея синтеза научных знаний - стремление построить общенаучную картину мира на основе принципа универсального эволюционизма, объединяющего в единое целое идеи системного и эволюционного подходов.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

27. Дифференциация и интеграция наук.

 

    Развитие науки характеризуется  диалектическим взаимодействием  двух противоположных процессов - дифференциацией (выделением новых научных дисциплин) и интеграцией (синтезом знания, объединением ряда наук - чаще всего в дисциплины, находящиеся на их "стыке"). На одних этапах развития науки преобладает дифференциация (особенно в период возникновения науки в целом и отдельных наук), на других - их интеграция, это характерно для современной науки.

     Процесс дифференциации, отпочкования  наук, превращения отдельных "зачатков" научных знаний в самостоятельные (частные) науки и внутринаучное "разветвление" последних в  научные дисциплины начался уже на рубеже XVI и XVII вв. В этот период единое ранее знание (философия) раздваивается на два главных "ствола" - собственно философию и науку как целостную систему знания, духовное образование и социальный институт. В свою очередь философия начинает расчленяться на ряд философских наук (онтологию, гносеологию, этику, диалектику и т.п.), наука как целое разделяется на отдельные частные науки (а внутри них - на научные дисциплины), среди которых лидером становится классическая (ньютоновская) механика, тесно связанная с математикой с момента своего возникновения.

     В последующий период процесс  дифференциации наук продолжал  усиливаться. Он вызывался как  потребностями общественного производства, так и внутренними потребностями  развития научного знания. Следствием этого процесса явилось возникновение и бурное развитие пограничных, "стыковых" наук.

    Как только биологи углубились  в изучение живого настолько, что поняли огромное значение  химических процессов и превращений  в клетках, тканях, организмах, началось усиленное изучение этих процессов, накопление результатов, что привело к возникновению новой науки - биохимии. Точно так же необходимость изучения физических процессов в живом организме привела к взаимодействию биологии и физики и возникновению пограничной науки - биофизики. Аналогичным путем возникли физическая химия, химическая физика, геохимия и т.д. Возникают и такие научные дисциплины, которые находятся на стыке трех наук, как, например, биогеохимия. Основоположник биогеохимии В. И. Вернадский считал ее сложной научной дисциплиной, поскольку она тесно и целиком связана с одной определенной земной оболочкой - биосферой и с ее биологическими процессами в их химическом (атомном) выявлении. "Область ведения" биогеохимии определяется как геологическими проявлениями жизни, так и биохимическими процессами внутри организмов, живого населения планеты.

    Дифференциация наук является  закономерным следствием быстрого  увеличения и усложнения знаний. Она неизбежно ведет к специализации  и разделению научного труда. Последние имеют как позитивные стороны (возможность углубленного изучения явлений, повышение производительности труда ученых), так и отрицательные (особенно "потеря связи целого", сужение кругозора - иногда до "профессионального кретинизма"). Касаясь этой стороны проблемы, А. Эйнштейн отмечал, что в ходе развития науки "деятельность отдельных исследователей неизбежно стягивается ко все более ограниченному участку всеобщего знания. Эта специализация, что еще хуже, приводит к тому, что единое общее понимание всей науки, без чего истинная глубина исследовательского духа обязательно уменьшается, все с большим трудом поспевает за развитием науки...; она угрожает отнять у исследователя широкую перспективу, принижая его до уровня ремесленника".

     Одновременно с процессом дифференциации происходит и процесс интеграции - объединения, взаимопроникновения, синтеза наук и научных дисциплин, объединение их (и их методов) в единое целое, стирание граней между ними. Это особенно характерно для современной науки, где сегодня бурно развиваются такие синтетические, общенаучные области научного знания как кибернетика, синергетика и др., строятся такие интегративные картины мира, как естественнонаучная, общенаучная, философская (ибо философия также выполняет интегративную функцию в научном познании).

Тенденцию "смыкания наук", ставшей закономерностью современного этапа их развития и проявлением парадигмы целостности, четко уловил В. И. Вернадский. Большим новым явлением научной мысли XX в. он считал, что "впервые сливаются в единое целое все до сих пор шедшие в малой зависимости друг от друга, а иногда вполне независимо, течения духовного творчества человека. Перелом научного понимания Космоса совпадает, таким образом, с одновременно идущим глубочайшим изменением наук о человеке. С одной стороны, эти науки смыкаются с науками о природе, с другой - их объект совершенно меняется". Интеграция наук убедительно и все с большей силой доказывает единство природы. Она потому и возможна, что объективно существует такое единство.

      Таким образом, развитие науки  представляет собой диалектический  процесс, в котором дифференциация  сопровождается интеграцией, происходит  взаимопроникновение и объединение  в единое целое самых различных  направлений научного познания  мира, взаимодействие разнообразных методов и идей.

В современной науке получает все большее распространение объединение наук для разрешения крупных задач и глобальных проблем, выдвигаемых практическими потребностями. Так, например, сложная проблема исследования Космоса потребовала объединения усилий ученых самых различных специальностей. Решение очень актуальной сегодня экологической проблемы невозможно без тесного взаимодействия естественных и гуманитарных наук, без синтеза вырабатываемых ими идей и методов.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

28. Роль нелинейной динамики  и синергетики в развитии современного  знания.

 

Нелинейная динамика — междисциплинарная наука, в которой изучаются свойства нелинейных динамических систем. Нелинейная динамика использует для описания систем нелинейные модели, обычно описываемые дифференциальными уравнениями и дискретными отображениями. Нелинейная динамика включает в себя теорию устойчивости, теорию динамического хаоса, эргодическую теорию, теорию интегрируемых систем.

Синергетика  —  наука  об  универсальном  эволюционизме.

Автором термина «Синергетика» является Ричард Бакминстер Фуллер — известный дизайнер, архитектор и изобретатель из США.

В  формировании  нового  мышления  в  XXI  веке  большую  роль  должна  сыграть  синергетика.

При  создании  картины  мира  возникает  необходимость  опираться  на  научные  дисциплины  интегрального  характера.  Последние  должны  охватывать  объекты  и  субъекты  косного  (физического),  живого  (биологического)  миров  и  социума.  В  восьмидесятых  годах  нашего  века  возникла  такая  наука,  которая  получила  название  синергетика,  что  в  переводе  с  греческого  означает  совместное  кооперативное  действие.  Эта  наука  носит  интегрирующий  характер,  объединяя  общими  законами  разные  области  наук:  физику,  химию,  биологию,  психологию,  социальные  науки,  астрономию,  философию  и  т.д.  В  частности,  синергетика  впервые  сформулировала  универсальные  законы  эволюции,  справедливые  как  для  физического  (косного),  так  и  для  биологического  (живого)  миров  и  социума.

Синергетику  можно  определить  по-разному,  например:

—  наука  о  самоорганизации  физических,  биологических  и  социальных  систем;

—  наука  о  неустойчивых  состояниях,  предшествующих  катастрофе  и  их  дальнейшей  эволюции  (теория  катастроф);

Основное понятие синергетики — определение структуры как состояния, возникающего в результате многовариантного и неоднозначного поведения таких многоэлементных структур или многофакторных сред, которые не деградируют к стандартному для замкнутых систем усреднению термодинамического типа, а развиваются вследствие открытости, притока энергии извне.

Синергетика объясняет процесс самоорганизации в сложных системах следующим образом:

1. Система  должна быть открытой.

2. Открытая  система должна быть достаточно  далека от точки термодинамического  равновесия.

Информация о работе Шпаргалка по "Философии"