Автор работы: Пользователь скрыл имя, 13 Октября 2013 в 18:23, курсовая работа
Сварная металлическая конструкция в настоящей работе представляет собой подкрановую конструкцию: грузоподъемностью 150 кН, шаг колонны 12 м., длинной пролета 36 м. К подкрановым конструкциям относятся: подкрановые балки, тормозные балки (иногда и фермы), крепления балок к колоннам, крановые рельсы и детали их креплении к балке, крановые упоры на концевых участках балок. Основными несущими элементами подкрановых конструкций являются подкрановые балки, которые воспринимают нагрузки от мостовых кранов и передают их на колонны.
Сварка в защитных газах — один из распространенных способов сварки плавлением. По сравнению с другими способами имеет ряд преимуществ, в которых главные: возможность визуального, в том числе и дистанционного, наблюдения за процессом сварки; широкий диапазон рабочих параметров режима сварки в любых пространственных положениях; возможность механизации и автоматизации процесса, в том числе с применением робототехники высокоэффективная защита расплавленного металла; Возможность сварки металлов разной толщины в пределах от десятых долей до десятков миллиметров.
Сварка в защитных газах (СЗГ) — общее название разновидностей дуговой сварки, осуществляемой с вдуванием через сопло горелки в зону дуги струн защитного газа. В качестве защитных применяют: инертные (Ar, Не), активные (СО2, 02, N2, H2) газы и их Смеси (Ar+СО2+02, Ar+02, Ar+ +С02 и др.).
Разновидности СЗГ можно классифицировать по таким признакам, как: тип защитных газов, характер защиты в зоне сварки, род тока, тип электрода и т. д.. По совокупности основных физических явлений процесс дуговой сварки в защитных газах можно классифицировать по двум основным схемам — это сварка неплавящимся (СНЭЗГ) и плавящимся (СПЭЗГ) электродами.
Сварочная дуга в среде защитных
газов характеризуется
Для сварки неплавящимся электродом применяют в основном инертные газы Ar и Не, а также их смеси в любом соотношении. Эти газы, особенно Не, обладают высокими потенциалами ионизации, что затрудняет первоначальное возбуждение дуги. Однако напряженность электрического поля (Е) в столбе дуги в инертных газах имеет сравнительно низкое значение и поэтому дуговой разряд в инертных газах отличается высокой стабильностью. При сварке плавящимся электродом напряжение дуги и стабильность ее существования существенно зависят от состава защитного газа.
Повышение напряжения дуги с увеличением концентрации молекулярных газов (Н2, Ы2, 02 и СО2) объясняется интенсивным охлаждающим действием этих газов в связи с затратами энергии на диссоциацию и отводом теплоты за счет высокой теплопроводности. Увеличение напряжения дуги приводит к снижению ее устойчивости.
Инертные газы практически полностью являются нейтральными по отношению ко всем свариваемым металлам. Инертные газы применяют для сварки химически активных металлов и сплавов, а также во всех случаях, когда необходимо получать сварные швы, Однородные по составу с основным и присадочным металлами.
В сварочном производстве используемый аргон поставляется в газообразном и в жидком состояниях. Газообразный аргон отпускают, хранят и транспортируют в стальных баллонах (по ГОСТ 949_-_73) или автоцистернах под давлением 150,5 или 20 1,0 МПа при 293 К.
При поставке аргона в баллонах (по ГОСТ 949—73) вместимостью 40 дм3 объем газа в баллоне составляет 6,2 м3 (при нормальном давлении 15 МПа и 293 К).
Гелий для Сварки поставляется по ТУ 51-689—75 трех сортов: марки А, Б и В. Транспортируют и хранят гелий в стальных баллонах вместимостью 40 дм3 в газообразном состоянии при давлении 15 МПа или в сжиженном состоянии при давлении до 0,2 МПа. Стоимость гелия значительно выше, чем аргона, поэтому его применяют в основном при сварке химически чистых и активных металлов и сплавов. Применение гелия обеспечивает получение большей глубины проплавления (благодаря высокому значению потенциала ионизации), поэтому его применяют иногда в тех случаях, когда требуется усиление проплавляющей способности дуги или получение специальной формы шва.
В качестве активных защитных газов при сварке широко используют углекислый газ. К активным газам могут быть отнесены также азот и водород, используемые в некоторых сварочных процессах как составная часть защитного газа.
В сварочном производстве азот иногда используют для сварки меди и ее сплавов, по отношению к которым азот является инертным газом. По отношению к большинству других металлов азот является активным газом, часто вредным, и его концентрацию в зоне плавления стремятся ограничить.
Водород в сварочном производстве используют достаточно редко для атомноводородной сварки и дуговой сварки в смеси (Ar+H2 до 12 %). Водород используют только в специальных областях сварки, поскольку он играет важную роль в металлургических процессах сварки. Ввиду возможности образования взрывоопасной смеси между водородом и воздухом при работе с ним следует строго соблюдать требования техники безопасности.
В ряде случаев для расширения технологических возможностей дуговой сварки целесообразно применять смеси аргона и гелия. Добавка гелия способствует повышению проплавляющей способности дуги.
1. Смесь Ar+ (10+30 % N2) Добавка N2 к аргону также способствует повышению проплавляющей способности дуги. Эту смесь применяют при сварке меди и аустенитной нержавеющей стали некоторых марок.
2. Смесь Ar (1+5% 02). Примесь кислорода к аргону понижает критический ток, при котором капельный перенос металла переходит в струйный, что позволяет несколько увеличить производительность сварки и уменьшить разбрызгивание металла. Аргонокислородную смесь применяют для сварки малоуглеродистой и легированной стали.
3. Смесь Ar+ (10+20 % СО2). Углекнслый газ при сварке малоуглеродистой и низколегированной стали способствует устранению пористости в сварных швах. добавка СО2 к аргону повышает стабильность дуги и улучшает формирование шва при сварке тонколистовой стали.
4. Тройная смесь 75 % Ar —20 % С02—5 % 02 обеспечивает высокую стабильность дуги с плавящимся электродом при сварке стали, минимальное разбрызгивание металла, хорошее формирование шва, отсутствие пористости.
При отсутствии готовых газовых смесей смешивание газов можно осуществлять на сварочном посту. Состав смеси, подаваемой в горелку, регулируется изменением расхода газов, входящих в смесь. Расход каждого газа регулируется отдельным редуктором и измеряется ротаметром типа РС-З.
Способы газовой защиты. По отношению к электроду защитный газ можно подавать центрально или сбоку. Защиту сварочной ванны газом, истекающим из горелки, принято называть струйной. Струйная защита относится к наиболее распространенному способу местной защиты при сварке. Качество струйной защиты зависит от конструкции и размеров сопла, расхода защитного газа и расстояния от среза сопла до поверхности свариваемого металла. Наилучшая защита расплавленного металла обеспечивается при ламинарном характере истечения газового потока из сопла горелки.
При сварке плавящимся электродом в защитных газах (СПЭЗГ) дуговой разряд существует между концом непрерывно расплавляемой проволоки и изделием, Проволока подается в зону дуги с помощью механизма со скоростью, равной средней скорости ее плавления; этим поддерживается постоянство средней длины дугового промежутка. Расплавленный металл электродной проволоки переходит в сварочную ванну и таким образом участвует в формировании шва.
Преимущества плавящегося
— высокая плотность мощности, обеспечивающая относительно узкую зону термического влияния;
— возможность металлургического
воздействия на металл шва за счет
регулирования состава
— широкие возможности механизаци
— высокая производительность сварочного процесса,
При СПЭЗГ можно выделить три основные разновидности процесса дуговой сварки: сварку короткой дугой; сварку длинной дугой; процесс с периодическими перерывами в горении дуги.
Сварка короткой дугой является естественным импульсным .процессом и осуществляется с постоянной скоростью подачи электрода. Особенностью этого процесса являются частые периодические замыкания дугового промежутка (до 150—300 замыканий в секунду), что определяется такими факторами, как: напряжение между электродами, скорость подачи и диаметр электрода, индуктивность сварочной цепи, свойства защитной среды [4].
При сварке короткой дугой имеет место в основном мелкокапельный перенос электродного металла с частотой, равной частоте коротких замыканий.
Сварка короткой дугой обладает
рядом технологических
Сварка длинной дугой—это
При крупнокапельном переносе капля сравнительно большого размера образуется на электроде постепенно и долго удерживается на нем. Основными силами, ответственными за крупнокапельный перенос, являются сила тяжести и сила поверхностного натяжения.
При взаимодействии жидкого металла
капли с защитными газами поверхностное
натяжение существенно
Определенным недостатком сварк
02, Ar—СО2, Ar—С02—О2 широко применяется на практике. Процесс с периодическими перерывами в горении дуги — это процесс с прерывистым током. Управляемый процесс с принудительными перерывами в горении дуги обеспечивает надежный разрыв перемычки между электродом и сварочной ванной, и заданное время горения дуги после короткого Замыкания может найти практическое применение для сварки малых толщин.
Значительная часть тепловой энергии
переносится в свариваемый
Сварку плавящимся электродом обычно выполняют на токе обратной полярности. При прямой полярности скорость расплавления металла в 1,4—1,6 раза выше, чем при обратной, однако дуга горит менее стабильно, с интенсивным разбрызгиванием.
Вылет электрода благодаря высокой плотности тока оказывает существенное влияние как на энергетический баланс при сварке, так и на стабильность процесса, К примеру, оптимальные величины вылета стального электрода (ВЭ) следующие:
Мм 0,5 0,8 1,6 2,0 3,0
ВЭ, мм . 5—7 6—8 11—14 14— 17 20—30
Техника сварки. К основным параметрам режима сварки плавящимся электродом относятся ток, полярность, напряжение дуги, диаметр и скорость подачи электродной проволоки, расход и состав защитного газа, вылет электрода, скорость сварки.
Сварочный ток, определяющий размеры шва и производительность процесса, зависит от диаметра и состава проволоки и устанавливается в соответствии со скоростью ее подачи. В зависимости от диаметра проволоки рекомендуются определенные пределы сварочного тока, при которых обеспечивается стабильность процесса сварки. Напряжение на дуге устанавливается в соответствий с величиной тока и учетом формирования шва, разбрызгивания металла и производительности процесса.
Скорость сварки плавящимся электродом (обычно 15— 80 м/ч) выбирают в зависимости от производительности и качества формирования шва.
Оборудование для СПЭЗГ. При полуавтоматической сварке, когда возможны Значительные изменения вылета электрода, следует применять Источники питания с жесткой внешней характеристикой. При автоматической сварке, когда вылет электрода изменяется мало, можно применять источники с жесткой и пологопадающей характеристиками.
Механизированная сварка осуществляется сварочными автоматами и полуавтоматами, обеспечивающими автоматическую подачу электродной проволоки и других сварочных материалов в зону плавления. При полуавтоматической сварке перемещение дуги вдоль свариваемого изделия осуществляется сварщиком вручную. Полуавтоматы состоят из: горелки или комплекса горелок со шлангами; механизма подачи электродной проволоки; кассеты катушки для электродной проволоки; шкафа или блока управления; провода сварочной цепи и цепей управления; аппаратуры для регулирования и измерения параметров газа и шлангов для газа; источника питания.
При автоматической сварке плавящимся электродом качественные соединения получают на металле толщиной 1,0 мм, для полуавтоматической сварки толщина металла также 1,0 мм. Металлы толщиной 4—12 мм сваривают за два прохода с двух сторон, металлы толщиной 15— 20 мм сваривают за два-три прохода при V-образной разделке кромок с углом 60 и притуплением 2—4 мм. При толщине 20 – 30 мм применяют двух стороннюю разделку кромок с углом 60° и притуплением 2—4 мм. Металлы большей толщины целесообразно сваривать при узкой щелевой разделке кромок за несколько проходов.