Технология бетона

Автор работы: Пользователь скрыл имя, 12 Июня 2013 в 18:43, курсовая работа

Описание работы

Железобетонные изделия для сборного строительства – относительно новый вид конструктивных элементов. Начало практического применения их относят к концу прошлого столетия. В 20-х и 30-х годах текущего столетия появились первые здания, выполненные в основном из сборных железобетонных изделий и конструкций. Однако широкому и всестороннему применению сборного железобетона в то время препятствовали низкий уровень механизации строительства, отсутствие мощных монтажных кранов и оборудования для производства железобетонных изделий.

Содержание работы

Введение
1 Номенклатура и характер выпускаемых изделий
2 Выбор и характеристики исходных материалов
2.1 Цемент
2.2 Мелкий заполнитель
2.3 Крупный заполнитель
2.4 Вода
2.5 Добавки для бетона
3 Проектирование состава бетона
4 Технологическая схема производства
5 Описание производственного процесса
6 Температурная обработка изделий
7 Приёмка и испытание изделий
8 Контроль качества изделий
9 Охрана труда и безопасность жизнедеятельности
10Список использованных источников

Файлы: 1 файл

курсовая.doc

— 263.50 Кб (Скачать файл)

Гидрофобизующие добавки, как правило, существенно повышают нераселаиваемость, связанность бетонной (растворной) смеси, находящейся в покое. При действии внешних механических факторов (при перемешивании, укладке и т.д.) бетонная или растворная смесь с добавкой отличается повышенной пластичностью. Такое свойство гидрофобизующих смесей объясняется специфическим смазочным действием тончайших слоев поверхностно-активных веществ, распределяемых в смеси. Кроме того, эти добавки предохраняют цементы от быстрой потери активности при перевозке или хранении. В качестве гидрофобизующих добавок раньше применялись в основном природные продукты – некоторые животные жиры, алеиновая и стеариновая кислоты. Развитие химической промышленности дало возможность широко использовать новые гидрофобизующие добавки – битумные дисперсии (эмульсии и эмульсосуспензии), нафтеновые кислоты и их соли, окисленные, синтетические жирные кислоты и их кубовые остатки, кремнийорганические полимеры и др.

Воздухововлекающие добавки  позволяют получать бетонные (растворные) смеси с некоторым дополнительным количеством воздуха. Чтобы повысить пластичность смеси, обычно увеличивают объем вяжущего теста. Вовлекая воздух, увеличивается объем вяжущего теста без введения лишнего цемента. Поэтому удобоукладываемость такой системы повышается. К тому же воздухововлекающие добавки образуют и ориентированные слои, активные в смазочном отношении. Широко применяют воздухововлекающие добавки на основе смоляных кислот, смолу нейтрализованную воздухововлекающую (СНВ), смыленный древесный пек и др.

К ускорителям твердения  цемента, увеличивающим нарастание прочности бетона, особенно в ранние сроки, относятся хлорид кальция, сульфат натрия, нитрит-иитрат-хлорид кальция и др. Влияние хлористого кальция на повышение прочности бетона объясняется его каталитическим воздействием на гидратацию С3S и C2S, а также реакцией с С3А и C4AF. Ускорители твердения не рекомендуется применять в железобетонных конструкциях и предварительно напряженных изделиях с диаметром арматуры менее 5 мм и для изделий автоклавного твердения, эксплуатирующихся в среде с влажностью более 60%. Сульфат натрия может вызвать появление высолов на изделиях.

В нитрит-нитрат-хлориде  кальция ускоряющее действие хлорида  сочетается с ингибирующим действием  нитрата кальция.

Противоморозные добавки – поташ, хлорид натрия, хлорид кальция и  др. – понижают точку замерзания воды, чем способствуют твердению бетона при отрицательных температурах.

Для замедления схватывания применяют  сахарную патоку и добавки СДБ, ГКЖ-10 и ГКЖ-94.

Пено- и газообразователи применяют для изготовления ячеистых бетонов. К пенообразователям относятся  клееканифольные, смолосапониновые, алюмосульфонафтеновые  добавки, а также пенообразователь ГК. В качестве газообразователей  применяют алюминиевую пудру  ПАК-3 и ПАК-4.

Комбинированные добавки, например пластификатор  СДБ, ускоритель твердения (хлористый  кальций) с ингибитором (нитратом натрия), способствуют экономии цемента. При  этом ускоритель твердения нейтрализует некоторое замедление твердения  смеси в раннем возрасте.

 

 

  1. Проектирование состава бетона

 

Подбор состава бетона осуществляется на методе абсолютных объемов с использованием формулы  Боломея-Скрамтаева

 

 (1)

 

где Rб – требуемая марка бетона;

А – коэффициент, характеризующий  качество заполнителей;

Rц – активность цемента.

1. Определяем ориентировочный расход воды для приготовления бетонной смеси исходя из ее удобоукладываемости. Бетонная смесь имеет жесткость 50…70с, тогда ориентировочный расход воды составит для щебня фракции 5…10 – 173 л/м3.

2. Из формулы (1) определяем  Ц/В

 

.

 

3. Определяем ориентировочный  расход цемента

Ц=В∙Ц/В=210∙1,85=388,5 кг.

С уменьшением модуля крупности песка возрастает расход цемента. Пески с Мк<1,5 увеличивают расход цемента на 12%. Тогда расход цемента с учетом Мк песка будет

Ц=(303∙0,12)+303=339 кг.

4. Водопотребность песка  составляет 9%, тогда должен быть увеличен на 5 л на каждый процент увеличения водопотребности. Ориентировочный расход воды равный 173 л принят для песков средней крупности, имеющих водопотребность 7%. Тогда расход воды будет 173+10=183 л. Тогда с учетом крупности песка реальное целое будет 258/183=1,41.

5. Определяем расход  щебня

 

Vпуст=1-

 

где α – коэффициент  раздвижки зерен крупного заполнителя, зависящий от расхода цемента, равный 1,31.

 

.

 

6. Определяем расход  песка

 

 

Проверка:

109+183+249,5+458,5=1000.

Получили бетон следующего состава:

 

 

  1. Технологическая схема производства

 

При агрегатно-поточном способе изделия формуют с помощью специальных машин на посту формования, а затем перемещают мостовым краном в камеры тепловой обработки. При окончании тепловой обработки изделия распалубливают, а форму готовят для последующего производства. После приёмки ОТК готовые изделия отправляют на склад. Преимуществом этого способа является возможность изготовления изделий широкой номенклатуры (предпочтительно длинной до 12 м, шириной до 3 м и высотой до 1 м), достаточно полной механизации и частичной автоматизации процессов, осуществления чёткого пооперационного контроля. Кроме того, технологически линии с агрегатно-поточным способом производства обладают небольшим капиталовложением, по сравнению с другими способами, и ускоренными сроками строительства.

В состав технологических  линий с агрегатно-поточным способом входят следующие основные агрегаты: формующая машина или бетоноукладчик с виброплощадкой, формоукладчик, установка  для нагрева или механического  натяжения арматуры, камера тепловой обработки, а так же посты распалубки, чистки и смазки форм, складирования полуфабриката, резервных форм и готовых изделий (в зимнее время), ремонта и доводки форм, стенд для испытания готовых изделий.

Все виды производства сборного железобетона при проектировании необходимо размещать в унифицированных, типовых пролётах (длиной 144 м и шириной 18 м). В пролёте предусмотрено 2 формовочных поста, пропарочные камеры ямного типа, установка для предварительного напряжения арматуры и стенд устранения дефектов. Изготовление плит размером 3×6 метров производится с немедленной распалубкой со съёмом бортоснастки. Поддон после укладки напрягаемой арматуры смазывают и перемещают мостовым краном на продольный формоукладчик. После укладки бортоснастки с помощью формоукладчика форма подаётся на виброплощадку марки СМЖ 200А (грузоподъёмностью 15т). Укладка бетона производится бетоноукладчиком марки СМЖ 166А продолжительность цикла 15 мин. После уплотнения бетона и съёма бортоснастки поддон с изделием поступает в пропарочную камеру.

На поточно-агрегатных линиях с формовочными постами, принятыми  в типовых проектах, формы на виброплощадку  обычно подают с помощью формоукладчика.

При поточном способе организации производства процессы формования, твердения и распалубке изделия выполняются на специализированных постах, входящих в состав технологического потока. Каждый пост оборудован соответствующими машинами и механизмами, а формы и изделия перемещаются от одного поста к другому. Поточное изготовление изделий в перемещаемых формах может быть запроектировано по поточно-агрегатной и конвейерной схемам производства. Конвейерный способ характеризуется тем, что изделие перемещается о поста к посту с принудительным ритмом (например 15 мин), который устанавливают по наиболее длительной технологической операции. При поточно-агрегатном способе формы и изделия двигаются от поста к посту с произвольным интервалом, характерным для данной операции. Конвейерные технологические линии целесообразно применять значительной мощности при изготовлении однотипных конструкции большими партиями.

Достоинство поточно-агрегатного  способа – более гибкая и маневренная  технология в отношении использования  технологического оборудования, возможность  изготовления широкой номенклатуры изделий с меньшими капитальными затратами по сравнению с конвейерной технологией. По мимо этого поточно-агрегатная технология, основанная на применении передвижных агрегатов, позволяет формовать изделия за несколько проходов, что гарантирует высокое качество изделий сложной конфигурации и многослойных (стеновых панелей, кровли) и позволяет производить замену устаревшего оборудования без значительной переделки линии. Агрегатно-поточная технология особенно целесообразна при изготовлении различных по геометрической конфигурации элементов.

 

  1. Описание производственного процесса

 

Содержать формы и  формовочное оборудование в чистоте  необходимо не только для продления  срока их эксплуатации, но и для  обеспечения высокого качества изготовляемых  изделий. После каждого цикла  формования формы чистят и смазывают, применяя для этого различные машины, приспособления и смазочные материалы. Для очистки форм и поддонов применяют машины, рабочими органами которых являются цилиндрические щетки из стальной проволоки, абразивные круги и инерционная фреза из металлических колец. Машины с относительно мягкими металлическими щетками применяют после каждого цикла формования. Машины с абразивными кругами или жесткими щетками используют не чаще одного раза в 2 – 3 месяца, так как при такой чистке быстро изнашивается металл.

Часто очистку поддонов осуществляют машинами с инерционной  фрезой, состоящей из металлических  колец, свободно висящих на пяти кольцах. При вращении фрезы кольца ударяют  по поверхности поддона и дробят оставшуюся на нем пленку цементного раствора.

Поддоны можно очищать по двум схемам: первая – когда машина передвигается над поддоном; вторая – если поддон перемещается под машиной; вторая схема удобна при конвейерной технологии.

Для очистки форм применяют  также химический способ, который  основан на свойстве некоторых кислот, например соляной, разрушать цементную пленку. Для ускорения реакции применяют в качестве катализатора 0,2%-ный раствор солей NaNО2 и KNO2. Химическую очистку можно производить не чаще одного раза в год. Формы следует чистить на специальном посту с соблюдением требований техники безопасности.

На качество железобетонных изделий влияет сцепление бетона с поверхностью форм. Один из способов уменьшения сцепления – использование  смазок. Правильно выбранная и  хорошо нанесенная смазка облегчает расформование изделия и способствует получению его ровной и гладкой поверхности.

На заводах применяют  три вида смазок: водные и водно-масляные суспензии, водно-масляные и водно-мыльные  эмульсии, машинные масла, нефтепродукты  и их смеси.

Суспензии – простейшие смазки, их применяют на заводах при отсутствии других смазок. К ним относятся известковая, меловая, глиняная и шлаковая (из отходов, получаемых при шлифовании мозаичных изделий). Однако эти смазки легко размываются.

Эмульсионные смазки. Наиболее стойки и экономичны водно-масляные, эмульсионные смазки, например, приготовленные на основе кислого синтетического эмульсола ЭКС. Эмульсол представляет собой темно-коричневую жидкость, полученную из смеси веретенного масла (35%) и высокомолекулярных синтетических кислот (5%). Из эмульсола ЭКС делают прямую эмульсию («масло в воде») и обратную эмульсию («вода в масле»); последняя более водостойка.

Приготовление смазок производят при помощи различных смесителей, в том числе эмульсий, с использованием ультразвуковых или механических эмульгаторов, которые дают возможность смешивать между собой жидкости, не смешивающиеся в обычных условиях (бензин с водой, масло с водой и т.п.).

Смазку на поверхность  форм наносят обычно различными распылителями, а в тех местах, где неудобно их использовать, применяют специальные механизмы. Более тонкое распыление и большой факел могут получиться, если применить для нанесения смазки сжатый воздух. Расход смазки зависит от ее консистенции, конструкции и типа форм (горизонтальной или вертикальной), способа нанесения смазки (ручного, механического), качества поверхности смазки.

В заводском производстве на долю арматуры приходится около 20% себестоимости железобетонных изделий, поэтому вопросы организации арматурных работ на заводах сборного железобетона являются важнейшими и в техническом, и в экономическом отношениях.

Различают армирование  железобетонных изделий ненапряженное (обыкновенное) и предварительно напряженное. Операции армирования и виды арматуры, применяемые при каждом из этих способов армирования, имеют ряд принципиальных отличий.

Ненапряженное армирование  осуществляется с помощью плоских сеток и пространственных (объемных) каркасов, изготовленных из стальных стержней различного диаметра, сваренных между собой в местах пересечений. В железобетоне различают арматуру несущую (основную) и монтажную (вспомогательную). Несущая арматура располагается в местах изделия, в которых под нагрузкой возникают растягивающие напряжения; арматура воспринимает их. Монтажная арматура располагается в сжатых или ненапряженных участках изделия. Кроме этих видов арматуры применяют петли и крюки, необходимые при погрузочных работах, а также закладные части, крепления и связи сборных элементов между собой.

Арматурные сетки и каркасы изготовляют в арматурном цехе, оборудованном резательными, гибочными и сварочными аппаратами.   Изготовление арматуры складывается из следующих операций: подготовки проволочной и прутковой стали – чистки, правки, резки, стыкования, гнутья; сборки стальных стержней в виде плоских сеток и каркасов; изготовления объемных арматурных каркасов, включая приварку монтажных петель, закладных частей, фиксаторов. Подготовка арматуры, поступающей на завод в мотках и бухтах, заключается в их размотке, выпрямлении (правке), очистке и разрезке на отдельные стержни заданной длины. Правку и резку арматурной стали осуществляют на правильно-отрезных станках-автоматах.

Прутковую арматурную сталь  разрезают на стержни заданной длины, а также стыкуют сваркой в  целях уменьшения отходов. Стыкуют  стержни посредством контактной стыковкой электросварки и только в отдельных случаях при использовании стержней больших диаметров применяют дуговую сварку. Контактную стыковую сварку осуществляют методом оплавления электрическим током торцов стержней в местах их будущего стыка. При этом стержни сильно сжимают и сваривают между собой.

Информация о работе Технология бетона