Автор работы: Пользователь скрыл имя, 12 Июня 2013 в 18:43, курсовая работа
Железобетонные изделия для сборного строительства – относительно новый вид конструктивных элементов. Начало практического применения их относят к концу прошлого столетия. В 20-х и 30-х годах текущего столетия появились первые здания, выполненные в основном из сборных железобетонных изделий и конструкций. Однако широкому и всестороннему применению сборного железобетона в то время препятствовали низкий уровень механизации строительства, отсутствие мощных монтажных кранов и оборудования для производства железобетонных изделий.
Введение
1 Номенклатура и характер выпускаемых изделий
2 Выбор и характеристики исходных материалов
2.1 Цемент
2.2 Мелкий заполнитель
2.3 Крупный заполнитель
2.4 Вода
2.5 Добавки для бетона
3 Проектирование состава бетона
4 Технологическая схема производства
5 Описание производственного процесса
6 Температурная обработка изделий
7 Приёмка и испытание изделий
8 Контроль качества изделий
9 Охрана труда и безопасность жизнедеятельности
10Список использованных источников
Натяжение арматуры в
железобетонных конструкциях применяется
для повышения
Натяжение арматуры на упоры форм или стендов может быть одиночным (каждый арматурный элемент натягивается отдельно) или групповым (одновременно натягивается несколько элементов) в зависимости от конструктивных особенностей изделия.
Натяжение арматуры на стендах рекомендуется производить в два этапа. На первом этапе арматуру натягивают в усилием, равным 40–50% заданного. Затем проверяют правильность расположения напрягаемой арматуры, устанавливают закладные детали и закрывают борта формы. На втором этапе арматуру натягивают до заданного проектом усилия с перетяжкой на 10%, при которой арматуру выдерживают в течении 3–5 мин, после чего натяжение снижают до проектного.
Контролируемое напряжение должно соответствовать проекту. Контроль усилия натяжения должен выполняться по показаниям оттарированных манометров гидравлических домкратов и одновременно по удлинению арматуры. Результаты измерений усилия натяжения по показаниям манометров и по удлинению арматуры не должны отличаться более чем на 10%. При большем расхождении необходимо приостановить процесс натяжения арматуры, выявить и устранить причину расхождения этих показателей.
При использовании гидравлических
домкратов для натяжения
При натяжении арматуры гидродомкрат должен быть установлен так, чтобы его ось совпадала с продольной осью захвата арматурного элемента или пакета.
Для натяжения арматуры
следует преимущественно
При изготовлении монтажных петель, хомутов и друга фигурных элементов арматуры прутковую и проволочную арматурную сталь после разрезки подвергают гнутью.
Сборку сеток и каркасов из стальных арматурных стержней производят посредством точечной контактной электросварки, Сущность ее заключается в следующем. При прохождении электрического тока через два пересекающихся стержня в местах их контакта электрическое сопротивление оказывается наибольшим, стержни в этом месте разогреваются и, достигнув пластического состояния металла, свариваются между собой. Прочной сварке способствует также сильное сжатие стержней между собой. Процесс точечной сварки может длиться доли секунды при применении тока в несколько десятков тысяч ампер.
По агрегатно-поточному способу производства преимущественно изготовляют предварительно напряженные многопустотные настилы и панели перекрытия, плиты покрытия размером 3×6, 3×12 и 3×16 м. а также колонны и свай.
На первом посту производят распалубку изделий и отпуск натяжения арматуры. На втором посту ведут подготовительные операции к бетонированию: смазку форм. Установку арматуры и ее натяжение электротермическим способом. На третьем посту устанавливают второстепенные элементы изделия, закладные детали, монтажные петли и др. На четвертом посту укладывают ненапрягаемую арматуру, а на посту пять производят контроль всех операций и формы. После этого форма с помощью крана перемещается на виброплощадку. Бетонирование панели происходит за два подхода бетоноукладчика с вибронасадкой. Изделия пропаривают в ямных камерах.
Твердение отформованных изделий – заключительная операция технологии изготовления железобетона, в процессе которой изделия приобретают требуемую прочность. Отпускная прочность может быть равна классу бетона или меньше его. Так, прочность бетона изделий при отгрузке потребителю должна быть не менее 70% проектной (28-суточной) прочности для изделий из бетона на портландцементе или его разновидностях и 100% – для изделий из силикатного (известково-песчаного) или ячеистого бетона. Однако для железнодорожных шпал отпускная прочность должна превышать 70% и для пролетных строений мостов – 80% от класса. Допускаемое снижение отпускной прочности изделий определяется исключительно экономическими соображениями, так как в этом случае сокращается продолжительность производственного цикла и соответственно ускоряется оборачиваемость оборотных средств. При этом имеется в виду, что недостающую до проектной прочность изделия наберут в процессе их транспортирования и монтажа и к моменту загружения эксплуатационной нагрузкой прочность их будет не ниже проектной.
В зависимости от температуры среды различают следующие три принципиально отличающихся режима твердения изделий: нормальный при температуре 15 – 20 °С; тепловлажностная обработка при температуре до 100 °С и нормальном давлении; автоклавная обработка – пропаривание при повышенном давлении (0,8 – 1,5 МПа) и температуре 174 – 200 °С. Независимо от режима твердения относительная влажность среды должна быть близкой к 100%. Иначе будет происходить высушивание изделий, что приведет к замедлению или прекращению роста их прочности, так как твердение бетона есть в первую очередь гидратация цемента, т.е. взаимодействие цемента с водой.
Нормальные условия твердения достигаются в естественных условиях без затрат тепла. Это важнейшее технико-экономическое преимущество указанного способа твердения, отличающегося простотой в организации и минимальными капитальными затратами. В то же время экономически оправдан он может быть только в исключительных случаях. В естественных условиях изделия достигают отпускной 70%-ной прочности в течение 7 – 10 суток, тогда как при искусственном твердении – пропаривании или автоклавной обработке – эта прочность достигается за 10 – 16 ч. Соответственно при этом снижается потребность в производственных площадях, объеме парка форм, сокращается продолжительность оборачиваемости средств. Это и является причиной применения на большинстве заводов искусственного твердения. В то же время стремление отказаться от последнего является актуальной проблемой современной технологии бетона. Уже имеются бетоны, которые в течение одних суток при нормальных условиях твердения приобретают до 40 – 50% проектной прочности. Это достигается применением высокопрочных быстротвердеющих цементов, жестких бетонных смесей, интенсивного уплотнения вибрацией с дополнительным пригрузом, применением добавок – суперпластификаторов, ускорителей твердения, виброактивизации бетонной смеси перед формованием, применением горячих бетонных смесей. Дальнейшее развитие работ в этом направлении позволит, по-видимому, в ближайшие годы отказаться в ряде случаев от искусственного твердения.
Тепловлажностная обработка при нормальном давлении может осуществляться несколькими способами: пропариванием в камерах; электроподогревом; контактным обогревом; обогревом лучистой энергией; тепловой обработкой изделий в газовоздушной среде; горячим формованием. Среди приведенного разнообразия технико-экономическое преимущество пока остается за пропариванием в камерах периодического и непрерывного действия, а также в среде продуктов сгорания природного газа.
В камеры непрерывного действия загружают свежесформованные изделия на вагонетках, а с противоположного конца туннеля камеры непрерывно выходят вагонетки с отвердевшими изделиями. В процессе твердения изделия проходят зоны подогрева, изотермического прогрева (с постоянной максимальной температурой пропаривания) и охлаждения. В принципе камеры непрерывного действия, как и вообще всякое непрерывно действующее оборудование, обеспечивают наиболее высокий съем продукции с единицы объема камеры. Однако необходимость применения вагонеток и механизмов для перемещения изделий, а также ряд конструктивных сложностей туннельных камер в теплотехническом отношении не позволяет широко применять этот вид пропарочных камер. Используют их только при конвейерном способе производства.
Перспективными являются вертикальные камеры непрерывного действия.
Среди камер периодического действия основное применение находят камеры ямного типа, имеющие глубину 2 м типа и на 0,5 – 0,7 м выступающие над уровнем пола цеха. Размер камеры в плане соответствует размеру изделий или кратен им. Наиболее целесообразным является размер камеры, соответствующий размеру одного изделия в плане. В этом случае загрузочная емкость камеры и непроизводительный простой камеры под загрузкой будут минимальными. Однако при этом возрастает потребность в количестве камер. Технико-экономический анализ показал, что наиболее целесообразным оказывается размер камеры в плане, соответствующий размеру двух изделий. Стенки камеры выкладываются из кирпича или делаются бетонными. Сверху камера закрывается массивной крышкой с теплоизоляционным слоем, предупреждающим потери тепла. Для предупреждения выбивания пара в стенках камеры сверху ее предусматривается канавка, засыпаемая песком или заливаемая водой. В эту канавку входят соответствующие выступы на крышке камеры. Таким образом, создается затвор, препятствующий выбиванию пара из камеры.
Изделия загружаются в камеру краном в несколько рядов по высоте. Если изделия в формах, то каждый верхний ряд изделий устанавливают на стенки нижележащей формы (через деревянные прокладки). При формовании же изделий с частичной немедленной распалубкой поддон с изделием устанавливают на специальные откидывающиеся выступы, предусмотренные в стенках камеры.
Режим пропаривания в
камерах характеризуется
В качестве усредненного можно привести следующий режим: подъем температуры со скоростью 25 – 35 °С/ч, снижение температуры – 30 – 40 °С/ч, изотермическая выдержка 6 – 8 ч и максимальная температура 80 – 90 °С. Таким образом, общая продолжительность пропаривания для изделий на обыкновенном портландцементе в среднем составляет 12 – 15 ч. Твердение изделий – наиболее продолжительная операция, в десятки раз превышающая все другие. Это требует изыскания путей снижения продолжительности пропаривания, для чего необходимо знать определяющие факторы.
В первую очередь на режим
твердения оказывает влияние
вид цемента. Применение быстротвердеющих
цементов (алитовых и алитоалюминатных
портландцементов) позволяет до 2 раз
сократить продолжительность
Медленнотвердеющие цементы (пуццолановые и шлакопортландцементы) требуют более продолжительной изотермической выдержки (до 10 – 14 ч) и более высокой температуры изотермического прогрева (до 95 – 100 °С). Таким образом, общая продолжительность пропаривания бетонных изделий, приготовленных на пуццолановых или шлакопортландцементах, составляет 16 – 20 ч.
Применение жестких бетонных смесей, имеющих низкое начальное водосодержание, позволяет на 15 – 20% уменьшить продолжительность пропаривания. Если учесть, что дополнительные затраты энергии и труда на формование жестких смесей не превышают 10 – 15% и компенсируются снижением расхода цемента при этом, то экономическая целесообразность применения жестких смесей становится очевидной и в данном случае. Изделия из легких бетонов, как, например, медленно прогревающиеся в силу их повышенных теплоизоляционных качеств, требуют и более продолжительного режима тепловлажностной обработки.
Способ формования предварительно подогретой до 75 – 85 °С бетонной смеси получил название «горячего формования», при котором изделия поступают в камеру в подогретом виде и не требуют, таким образом, времени на их подогрев до максимальной температуры пропаривания. Этот способ предусматривает отказ от пропаривания. Свежесформованные горячие изделия укрывают (способ термоса) и оставляют на 4 – 6 ч, в течение которых бетон набирает необходимую прочность. Подогрев бетонной смеси производят электрическим током в течение 8 – 12 мин.
Приемка железобетонных изделий осуществляется партиями, которые состоят из однотипных изделий, изготовленных по одной технологии в течение не более 10 дней. В зависимости от объема изделий количество их в партии устанавливают техническими условиями и не должно превышать следующих величин:
Объем изделий, м3 |
до 0,1 |
0,1 – 0,3 |
0,3 – 1,0 |
1,0 – 2,0 |
свыше 2,0 |
Изделий в партии, шт. |
1000 |
700 |
300 |
150 |
100 |
В процессе приемки наружным осмотром проверяют внешний вид изделий, отмечают наличие трещин, раковин и других дефектов. Затем с помощью измерительных линеек и шаблонов проверяют правильность формы и габаритные размеры изделий. Если при контрольных замерах изделия будут выявлены отклонения по длине или ширине, превышающие допускаемые, то изделие бракуют.
При приемке изделий определяют и прочность бетона, которую устанавливают по результатам испытания контрольных образцов и путем испытания готовых изделий. Контрольные образцы с ребром 10, 15 и 20 см изготовляют в металлических разъемных формах в количестве не менее 3 шт. и не реже одного раза в смену, а также для каждого нового состава бетонной смеси. Уплотнение бетонной смеси в образцах осуществляют на стандартной виброплощадке с амплитудой 0,35 мм и частотой вращения 300 кол/мин.
Образцы должны твердеть
в одинаковых условиях с изделиями.
Предел прочности бетона определяют
путем испытания образцов на гидравлических
прессах и вычисляют как
Испытание готовых железобетонных изделий на прочность, жесткость и трещиностойкость производят согласно ГОСТам, Отбор изделий для испытаний производят в количестве 1% от каждой партии, но не менее 2 шт., если в партии менее 200 изделий. Испытание производят на специальных испытательных стендах, нагружая конструкцию гидродомкратами, штучными грузами или рычажными приспособлениями. Критерием прочности служит нагрузка, при которой изделие теряет свою несущую способность (разрушается).
В последнее время
для определения прочности