Железобетонные и каменные конструкции

Автор работы: Пользователь скрыл имя, 19 Ноября 2013 в 13:21, лекция

Описание работы

Вашему вниманию предлагается конспект лекций по дисциплине «ЖБК», которые преподаватели кафедры начитывают в период установочной сессии в 9-м семестре (так называемая первая часть курса).
Изучение приведенного материала позволит студенту понять сущность нового для него конструкционного материала=железобетона= и приступить к выполнению курсового проекта №1.
Следует иметь в виду, что при изучении дисциплины не следует ограничиваться только данным конспектом, а обязательно воспользоваться рекомендуемой литературой, список которой приведен в конце конспекта

Файлы: 1 файл

Лекции по ЖБК- часть 1.doc

— 634.00 Кб (Скачать файл)

Рис. 5. Диаграмма деформирования «мягких» арматурных сталей

Классификация арматуры.

Стержневая горячекатанная арматура в зависимости от ее основных механических характеристик подразделяется на 6 классов с условным обозначением A-I, A-II, A-III, A-IV, A-V, A-VI. Термическому упрочнению подвергают арматуру 4-х классов - Aт-III и выше. Дополнительной буквой С указывается на возможность стыкования сваркой; буква К указывает на повышенную коррозионную стойкость. Подвергнутая вытяжке в холодном состоянии стержневая арматура класса А-III, отмечается дополнительным индексом В.

Стержневая арматура всех классов  имеет периодический профиль  за исключением гладкой арматуры класса А-I.

Физический предел текучести 230 - 400 МПа имеет арматура классов A-I, A-II, A-III, условный предел текучести 600 - 1000 МПа - высоколегированная арматура классов A-IV, A-V, A-VI и термически упрочненная арматура.

Относительное удлинение после  разрыва зависит от класса арматуры. Значительным удлинением обладает арматура классов А-II, A-III (14 -19%), сравнительно небольшим удлинением - арматура классов A-IV, A-V, A-VI и термически упрочненная арматура всех классов (6 - 8%).

Арматурную проволоку диаметром 3 - 8мм подразделяют на два класса: Вр-I - обыкновенная арматурная проволока (холоднотянутая, низкоуглеродистая), предназначенная главным образом для изготовления сеток; B-II, Bp-II - высокопрочная арматурная проволока (многократно волоченная, углеродистая), применяемая в качестве напрягаемой арматуры преднапряженных элементов. Периодический профиль обозначается дополнительным индексом р - Bp-I, Bp-II.

Основная механическая характеристика проволоки - временное  сопротивление su, которое возрастает с уменьшением диаметра проволоки. Для обыкновенной арматурной проволоки -su = 550 МПа, для высокопрочной проволоки - su = (1300 – 1900) МПа.

Применение арматуры в конструкциях.

В качестве ненапрягаемой арматуры применяют имеющие сравнительно высокие показатели прочности стержневую арматуру класса A-III, Aт-III, арматурную проволоку класса Bp-I. Если прочность арматуры класса A-III не полностью используется в конструкции из-за чрезмерных деформаций или раскрытия трещин, то возможно применение арматуры класса A-II. Арматуру класса A-I можно применять в качестве монтажной, а также для хомутов вязанных каркасов, поперечных стержней сварных каркасов.

В качестве напрягаемой арматуры рекомендуется  применять стержневую термически упрочненную  арматуру классов Aт-IV, Aт-V, Aт-VI, горячекатаную  арматуру классов , A-IV, A-V, A-VI. Для элементов длиной свыше 12 м целесообразно использовать арматурные канаты классов К-7, К-19 и высокопрочную проволоку, допускается применять стержни классов A-IV, A-V.

При выборе арматурной стали  для применения в конструкциях учитывают  ее свариваемость. Хорошо свариваются контактной сваркой горячекатанная арматура классов  от A-I до A-VI, Aт-IIIC, Aт-IVC и обыкновенная арматурная проволока в сетках.

Арматурные сварные изделия.

Сварные сетки изготавливают по стандарту из обыкновенной арматурной проволоки диаметром 3 ¸ 5мм и арматуры класса A-III диаметром 6 ¸ 10мм. Сетки бывают рулонные и плоские. В рулонных сетках наибольший диаметр продольных рабочих стержней - 7мм. Ширина сетки ограничена размером  3800мм, масса рулона не более 1300кг, Причем длина сетки не более 9м.

Основные параметры стандартных  сеток в маркировке  D-v

                                                                                                d-u 

где D, d - диаметры продольных и поперечных стержней,

v, u - шаг продольных и поперечных стержней.

Плоские сварные каркасы изготавливают из одного или двух продольных рабочих стержней и привариваемых к ним поперечных стержней. Концевые выпуски продольных и поперечных стержней должны быть не менее 0.5D+d или 0.5d+D и не менее 20мм.

Пространственные каркасы образуют из плоских, в ряде случаев применяя соединительные стержни.

 

ЛЕКЦИЯ № 3

 

Тема: ОСНОВЫ РАСЧЕТА ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПО ПРЕДЕЛЬНЫМ СОСТОЯНИЯМ. ПРИНЦИПЫ КОНСТРУИРОВАНИЯ ИЗГИБАЕМЫХ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ.

План:

3.1. Стадии напряженно - деформированного  состояния


3.2. Метод расчета ЖБК по предельным  состояниям.

3.3. Классификация нагрузок и  сопротивлений бетона и арматуры  в МПС.

3.4. Конструирование изгибаемых  железобетонных балок и плит.


3.1. Три стадии напряженно - деформированного состояния железобетонных элементов

 

Опыты с различными железобетонными  элементами - изгибаемыми, внецентренно растянутыми, а также внецентренно сжатыми с двузначной эпюрой напряжений показали, что при постепенном  увеличении нагрузки можно наблюдать три характерные стадии напряженно - деформированного состояния (в дальнейшем будем применять сокращенный вариант этого термина - НДС);

стадия 1 - до появления в бетоне растянутой зоны трещин, когда напряжения в нем меньше временного сопротивления растяжению и растягивающие усилия воспринимаются арматурой и бетоном совместно;

            стадия Iа – непосредственно перед появлением первой трещины в растянутом бетоне; в этом состоянии напряжения в крайнем растянутом волокне бетона достигают предела прочности бетона на растяжение , т.е. sbt = Rbt;

стадия II - после появления трещин в бетоне растянутой зоны, когда растягивающие усилия в местах, где образовались трещины, воспринимаются арматурой и участком бетона над трещиной, а на участках между трещинами - арматурой и бетоном совместно;

стадия III - стадия разрушения, характеризующаяся относительно коротким периодом работы элемента, когда напряжения в растянутой стержневой арматуре достигают физического или условного предела текучести, а в высокопрочной проволоке - временного сопротивления, а напряжения в бетоне сжатой зоны - временного сопротивления сжатию. В зависимости от степени армирования элемента последовательность разрушения зон - растянутой и сжатой - может изменяться.

 

 

Рис. 6. Три стадии напряженно-деформированного состояния изгибаемого железобетонного элемента

 

 

Выявленные характерные стадии НДС железобетонных конструкций  позволили разработать методику расчета ЖБК, которая называется –«Метод предельных состояний» (в  дальнейшем будем применять сокращенное обозначение этого термина МПС), положенный в основу действующих Норм проектирования конструкций (СНиП 2.03.01-85).

При этом каждая из рассмотренных  стадий НДС положена в основу того или иного расчета в зависимости  от задачи соответствующего расчета. Например, стадия разрушения используется в расчете прочности сечений железобетонных элементов, так задача расчета прочности заключается в предотвращении разрушения; стадия Іа –положена в основу расчета по образованию трещин в железобетонных элементах, так как его задача – определить, образуются ли трещины в растянутом бетоне сечения, и т.д..

 

3.2. Метод расчета  ЖБК по предельным состояниям.

Сущность метода расчета конструкций  по предельным состояниям.

Сущность метода в том, что устанавливаются предельные состояния и вводится система расчетных коэффициентов, гарантирующих конструкцию от наступления этих предельных состояний при самых невыгодных сочетаниях нагрузок и минимальной прочности материалов.

Предельным называют такое состояние конструкции, при котором она (конструкция) перестает отвечать предъявляемым к ней требованиям (например, в ней образуются трещины, когда они недопустимы по условиям эксплуатации; либо ее прогибы превышают предельно допустимые; либо конструкция разрушается).

Две группы предельных состояний.

В МПС установлены две группы предельных состояний, у каждой из которых  свои определенные задачи, и в каждую из которых входит несколько расчетов, обеспечивающих достижение этих задач.

Первая группа предельных состояний называется – предельные состояния по несущей способности (иначе его называют – по пригодности к эксплуатации).

Расчет по 1 группе предельных состояний  выполняют, чтобы гарантировать  несущую способность конструкции , то есть предотвратить следующие  явления:

хрупкое, вязкое или иного  характера разрушение (расчет по прочности);

потерю устойчивости конструкции (расчет на устойчивость тонкостенных конструкций) или ее положения (расчет на опрокидывание и скольжение подпорных  стен, внецентренно нагруженных высоких фундаментов; расчет на всплытие заглубленных или подземных резервуаров и т.п.);

усталостное разрушение (расчет на выносливость конструкций, находящихся под воздействием многократно повторяющихся подвижных  или пульсирующих нагрузок: подкрановых  балок, шпал, рамных фундаментов или перекрытий под неуравновешенными машинами)

разрушение от совместного воздействия  силовых факторов и неблагоприятных  воздействий внешней среды (агрессивность  среды, попеременное замораживание  и оттаивание и т.п.).

 

Вторая группа предельных состояний объединяет предельные состояния по пригодности к нормальной эксплуатации конструкций.

Во вторую группу входят расчеты:

по образованию трещин;

по раскрытию трещин;

по закрытию трещин;

по деформациям.

Как видно из названий этих расчетов, их задача состоит в обеспечении нормальной эксплуатации конструкций или оборудования, расположенного на них.

 

 Для того, чтобы понять смысл  методики МПС, рассмотрим кратко  подход к назначению основных  расчетных факторов в МПС.

 

 

 

 

 

3.3. Классификация  нагрузок и сопротивлений бетона и арматуры в МПС.

Расчетные факторы.

Расчетные факторы - нагрузки и механические характеристики бетона и арматуры (временное  сопротивление, предел текучести) - обладают статистической изменчивостью (разбросом  значений). Нагрузки и воздействия могут отличаться от заданной вероятности превышения средних значений, а механические характеристики материалов - от заданной вероятности снижения средних значений. В расчетах по предельным состояниям учитывают статистическую изменчивость нагрузок и механических характеристик материалов, факторы нестатического характера, а также различные неблагоприятные или благоприятные физические, химические и механические условия работы бетона и арматуры, изготовления и эксплуатации элементов зданий и сооружений. Нагрузки, а также механические характеристики материалов и расчетные коэффициенты нормируют.

Классификация нагрузок в МПС.

Нагрузки в зависимости от продолжительности действия делят на постоянные и временные (длительные, кратковременные и особые).

К постоянным нагрузкам относят те, которые начинают действовать с момента изготовления конструкции (например, собственный вес несущих и ограждающих конструкций зданий и сооружений, вес и давление грунтов, воздействие предварительного напряжения железобетонных конструкций).

Временные нагрузки начинают действовать с начала эксплуатации конструкции.

Они подразделяются на: временные  длительные, временные кратковременные  и особые.

Временные длительные нагрузки: к ним относятся: вес стационарного оборудования на перекрытиях - станков, аппаратов, двигателей, емкостей и т.п.; давление газов, жидкостей, сыпучих тел в емкостях; вес содержимого в складских помещениях, холодильников, архивов и библиотек; установленная нормами часть временной нагрузки в жилых домах, в служебных и бытовых помещениях, длительные температурные технологические воздействия от стационарного оборудования; часть нагрузок от подвесных или мостовых кранов; часть снеговой нагрузки.

Временные кратковременные нагрузки: к ним относят вес людей, деталей и материалов в зонах обслуживания и ремонта оборудования - проходах и других свободных от оборудования участках; часть нагрузки на перекрытия общественных и жилых зданий; нагрузки, возникающие при изготовлении, перевозке и монтаже элементов конструкций; нагрузки от подвесных и мостовых кранов; снеговые и ветровые нагрузки, температурные и климатические воздействия.

Особые нагрузки. К ним относятся сейсмические и взрывные воздействия; нагрузки, вызываемые неисправностью или поломкой оборудования и резким нарушением технологического процесса (например, резкое повышение температуры); воздействие неравномерных деформаций основания (например, деформации просадочных грунтов при замачивании или вечномерзлых грунтов при оттаивании).

Нормативные и расчетные нагрузки в МПС.

В МПС используют два вида значений нагрузок – это так называемые нормативные и расчетные нагрузки.

Обращаем еще раз Ваше внимание, что  здесь идет речь о величинах  нагрузок, независимо от их классификации  по длительности действия. Например. постоянная нагрузка может иметь нормативное и расчетное значение; временная нагрузка также может учитываться как нормативного значения, так и расчетного значения в зависимости от . выполняемого расчета.

В МПС расчет прочности необходимо выполнять на действие расчетных (значений) нагрузок; расчет по предельным состояний второй группы ведут на действие нормативных нагрузок ввиду меньшей опасности предельных состояний этой группы.

Информация о работе Железобетонные и каменные конструкции