Мотор-тестер

Автор работы: Пользователь скрыл имя, 07 Июня 2013 в 15:32, курсовая работа

Описание работы

Основное отличие мотор-тестера от автомобильного осциллографа заключается в наличии предусмотренных программным обеспечением и конструкцией специальных тестов, позволяющих автоматизировано осуществлять специфические диагностические операции (тест "Баланс мощности", тест "Относительная компрессия" и пр. - см. далее).

Содержание работы

Мотор тестер описание и общие характеристики
Виды исполнения прибора
Параметры осциллографической части мотор-тестера
Поддержка специальных мотор-тестерных режимов диагностики
Справочные функции и экспертные системы
Язык интерфейса
Возможность сопряжения с компьютером
Возможности сопряжения с другими приборами
Удобство работы
Прочие параметры
Цены и комплектация
Приложение (Подробное описание одного мотор-тестера)
Резюме

Файлы: 1 файл

Мотор тестеры Басов.docx

— 306.78 Кб (Скачать файл)

При анализе характеристик  приборов необходимо учитывать, что, как  правило, несколько входных каналов  обслуживает один аналого-цифровой преобразователь (АЦП) - следствием этого  является то, что максимальная частота  работы этого АЦП делиться на число  задействованных каналов. При этом в проспектах, как правило, указывается  именно эта максимальная частота.

Возможности синхронизации. Процессы в электрических цепях автомобиля происходят непрерывно, однако многие из них имеют определенную периодичность и их сигнал "полезно", во-первых, посмотреть в привязке к периодическим процессам (работа определенного цилиндра и т.п.), во-вторых, сравнить осциллограмму в различных периодах (прежде всего, для оценки устойчивости).

Для того, чтобы отображение осциллограммы шло не непрерывно, а начиналось с определенного момента, выбранного диагностом, служит механизм синхронизации. В качестве источника синхронизации (сигнала, по поведению которого определяется начало периода снятия осциллограммы) служит, например, сигнал во вторичной цепи зажигания первого цилиндра (при работе с классической системой зажигания), сигнал с датчика положения коленчатого вала и пр. Как правило, диагност может в зависимости от стоящих задач сам выбрать требуемый источник синхронизации.

Для выявления нестабильности поведения сигнала от периода  к периоду удобен сервисный режим  послесвечения, когда осциллограмма, снятая в каждом последующем периоде  отображается не на очищенном от старых данных поле, а поверх осциллограмм этого же сигнала в предыдущих периодах (при этом осциллограммы  предыдущих параметров показываются с  уменьшающейся яркостью).

Возможности запоминания. Осциллографы делятся на запоминающие и незапоминающие. При снятии осциллограмм зачастую возникает необходимость запомнить просматриваемую осциллограмму (последовательность отображаемых кадров) для дальнейшего анализа - такая необходимость может возникнуть, когда интересующее диагноста возможное изменение осциллограммы носит либо слишком краткосрочный, либо непериодический (непредсказуемый характер), а также, когда требуется глубоко проанализировать осциллограмму, сравнить несколько осциллограмм и т.п.

Незапоминающий осциллограф либо дает возможность наблюдать сигнал только в режиме реального времени, либо может заморозить, остановить только текущий кадр (режим HOLD). При этом возможность осциллографа запомнить несколько замороженных кадров не делает его запоминающим в общем смысле этого слова.

Запоминающий  осциллограф позволяет записывать снимаемую осциллограмму в память и позже просматривать для анализа. Также некоторые модели позволяют сохранять осциллограмму не только на время сеанса диагностики, но и долговременно сохранять осциллограммы - например, для создания библиотеки осциллограмм. Разные запоминающие осциллографы могут запомнить разное количество кадров (оговаривается технической документацией).

Как правило, по этому параметру  существенно выигрывают приборы  на базе ПК - они обеспечивают максимально  возможный объем записи, а также  удобное хранение и каталогизацию  осциллограмм, обмен осциллограммами.

Наличие предустановленных  режимов. В современных системах управления используются десятки датчиков и исполнительных устройств - часть из них имеют сигналы со схожими параметрами, часть отличаются. При работе с общелабораторным осциллографом, который "не знает" об особенностях автомобильной диагностики при работе с каждым датчиком, диагност вынужден перед просмотром каждого сигнала вручную перенастраивать основные параметры отображения осциллограмм - развертку по времени (горизонтальной оси), по напряжению (вертикальной оси), источник синхронизации и пр. Хорошие автомобильные осциллографы, как правило, имеют набор стандартных режимов диагностики с предустановленными настройками - диагносту достаточно выбрать лишь тип датчика или исполнительного механизма. Иногда выбор нужного режима сопровождается и выводом вида эталонной осциллограммы.

Разрешение и  размер экрана. Этот параметр прямо оказывает влияние на удобство восприятия информации. Рекомендуются следующие минимальные диагонали и разрешения экрана:

- при работе с приборами  не на базе ПК - диагональ экрана - не менее 11-12 см. (5-6'') и разрешение - не менее 250 на 320 точек;

- при работе с ноутбуком  или планшетным ПК - диагональ  экрана - не менее 15'' и разрешение - не менее 640 на 480 точек;

- при работе со стационарным  ПК - диагональ экрана - не менее  17'' и разрешение - не менее 800 на 600 точек.

Быстродействие  вывода информации. Этот параметр критичен для приборов с жидкокристаллическим (ЖК) экраном. Даже если прибор имеет хорошую производительность при съеме и обработке информации низкая скорость вывода информации может свести все преимущества прибора на нет. Особенно сильно проблемы ЖК-экранов проявляются при низких температурах окружающего воздуха. К сожалению, альтернативы применению ЖК-экранов пока нет и эта проблема пока полностью не решена.

Также проблемы ЖК экранов  проявляются в виде "отсвечивания" и "недостатка яркости" при работе на открытом воздухе.

Возможности по управлению отображением сигнала. Удобство работы с осциллографом существенно увеличивается, если программным обеспечением предусмотрены функции изменения горизонтальных (временных) и вертикальных (амплитудных) разверток в широком диапазоне значений, масштабирования, автомасштабирования, перемещения осциллограмм сигналов, автоматической расстановки осциллограмм на экране, возможности развертывания осциллограммы на весь экран (в том числе со скрытием панелей меню) и пр.

Возможности анализа  сигнала. Возможности по анализу сигнала представляют собой, например, возможность использования измерительных меток (маркеров) - диагност выбирает определенную точку или точки осциллограммы и получает информацию о значении амплитуды сигнала в выбранной точке. Маркеров может быть и несколько - например, задав две точки диагност может получить информацию не только об амплитудах сигнала в этих точках и разнице между ними, но и о продолжительности временного промежутка между точками. Например, с помощью этой возможности можно по осциллограмме напряжения в цепи форсунки определить длительность периода открытого состояния форсунки (длительность впрыска), так как во многих осциллографах штатно режим измерения этого параметра не предусмотрен.

Особенности осциллографа зажигания. По основным параметрам осциллограф зажигания ничем не отличается от универсального осциллографа (во многих приборах деление на "модуль универсального осциллографа" и "модуль осциллографа зажигания" вообще условно и обработкой сигналов и первого и второго занимаются одни и те же цепи). Основных особенностей три:

- учитывая быстротекучесть процессов в системе зажигания, для осциллографа зажигания крайне критичным является параметр "частота дескритизации" - рекомендуется, чтобы при просмотре одного канала вторичного напряжения этот параметр был не ниже 200-300 кГц. Основной проблемой, которая может проявиться при просмотре осциллограммы при меньшей частоте выборки будет невозможность точно зафиксировать пиковое напряжение (показания будут всегда заниженными). К сожалению, для удешевления приборов зачастую приходиться идти на использование относительно более дешевых АЦП (аналогово-цифровых преобразователей) с меньшей частотой дискретизации, что вызывает описанные проблемы;

- для работы с системой  зажигания требуется использование  специальных датчиков, а также  каналов, предусматривающих их  подключение. Для синхронизации  от высоковольтного сигнала во  вторичной цепи используется  индуктивный датчик. Для непосредственно  снятия осциллограмм высоковольтных  сигналов используются разные  типы датчиков в зависимости  от особенностей различных систем зажигания. В системах с доступными высоковольтными проводами (традиционная система, система DIS), как правило, используют накладные емкостные датчики. Для систем "катушка на свече" (COP) и систем "катушка в распределителе" (CID) используют специализированные датчики.

- для полноценной работы  с системой зажигания требуется  поддержка со стороны программного  обеспечения осциллографа - дополнительные  функции по графическому представлению  осциллограмм (режимы растр, парад,  наложение и пр.) и вывод основных  параметров системы зажигания  (напряжения пробоя, напряжения горения,  длительности горения, длительности  периода накопления энергии, угла  опережения зажигания (УОЗ), угла  замкнутого состояния контактов  (УЗСК) и пр.). Для этого требуется поддержка со стороны программного обеспечения осциллографа - именно наличие такой поддержки отличает автомобильный осциллограф от лабораторного. При покупке прибора ознакомьтесь с документацией и выясните, какие специфические функции по работе с системой зажигания поддерживает прибор?

Функции по графическому представлению  осциллограмм системы зажигания  заключаются, прежде всего, в поддержке  различных режимов вывода осциллограммы  сигналов первичной и вторичной  цепи:

Режим "Один цилиндр" - отображается осциллограмма первичного и/или вторичного напряжения по одному выбранному цилиндру. Осциллограмму выбранного цилиндра можно изучить досконально. При выводе осциллограмм как первичной, так и вторичной цепи можно сделать вывод о локализации неисправности. Но отсутствует возможность сравнения осциллограмм разных цилиндров между собой.

Режим "Парад" - отображаются осциллограммы первичного или вторичного напряжения всех цилиндров с расположением в ряд, друг за другом. При этом, прежде всего, удобно сравнение амплитудных параметров (величин напряжения) по цилиндрам - напряжения пробоя, напряжения горения и пр.

Режим "Растр" - отображаются осциллограммы первичного или вторичного напряжения всех цилиндров с расположением в столбец, друг над другом. При этом удобно сравнивать временные величины по цилиндрам (время накопления энергии, время горения и пр.), а также формы осциллограмм.

Режим "Наложение" - отображаются осциллограммы первичного или вторичного напряжения всех цилиндров с расположением друг на друге. При этом сразу видно, осциллограмма какого из цилиндров существенно отличается от других.

При этом во всех режимах, современный  автомобильный осциллограф зажигания, дает диагносту подсказку - какая осциллограмма к какому цилиндру относится.

Вывод основных параметров системы зажигания не менее важен. Еще важнее - их анализ и форма  представления. Современные мотор-тестеры позволяют по каждому параметру отследить минимальные, максимальные и средние значения, а также сравнить различные параметры между цилиндрами представив их в максимально удобной для диагноста форме - например, в форме гистограмм (столбиковых диаграмм).

Также у разных приборов могут отличаться методики измерения  и/или расчета различных параметров - например, для определения угла опережения зажигания прибору требуется  определить момент импульса зажигания  в определенном цилиндре (во всех приборах определяется одинаково с помощью  индуктивного датчика), а также момент верхней мертвой точки (ВМТ) - а  вот он может быть определен либо с помощью стробоскопа, либо с  помощью снятия сигнала с датчика положения коленчатого вала, либо с помощью датчика давления, вкручиваемого в цилиндр вместо свечи).

Здесь перечислены все  основные параметры, значимые при выборе автомобильного осциллографа или мотор-тестера, включающего автомобильный осциллограф, прочие параметры имеют значение лишь при сравнении осциллографов лабораторного назначения.

Примечание. Строго говоря, еще осциллографы бывают цифровыми, аналогово-цифровыми и аналоговыми. Но аналогово-цифровые и аналоговые приборы в сфере автомобильной  диагностики уже не применяются - соответственно рассмотрение этого  критерия неактуально.

4 ПОДДЕРЖКА СПЕЦИАЛЬНЫХ МОТОР-ТЕСТЕРНЫХ РЕЖИМОВ ДИАГНОСТИКИ

Специальные мотор-тестерные режимы (иногда этот "блок" мотор-тестера еще называют анализатор цилиндров) - это главное, что, как уже говорилось выше, отличает мотор-тестер от автомобильного осциллографа. В частности это тесты:

- Тест "Баланс мощности по цилиндрам";

- Тест "Относительная компрессия";

- Тест "Эффективность цилиндров" ("Неравномерность вращения") - при установившейся работе двигателя прибор анализирует изменение временного промежутка между сигналами зажигания (которое зависит от вклада каждого цилиндра во вращение коленчатого вала);

- Тест "Давление в цилиндре" - в какой-либо из цилиндров вместо свечи вкручивается датчик давления. По снятой осциллограмме пульсаций давления в цилиндре, при наложении на нее сетки нормативных фаз открытия и закрытия клапанов определяется правильность работы газораспределительного механизма;

- Тест "Прокрутка" - двигатель прокручивается стартером, запуск двигателя блокирован. Во время прокрутки определяются обороты, минимальное и среднее напряжение бортсети, стартерный ток (при наличии токовых клещей);

- Тест "Запуск" - производиться запуск двигателя. Во время запуска определяются обороты, минимальное и среднее напряжение бортсети, стартерный ток (при наличии токовых клещей), время запуска;

- Тест "Разгон" - определяется время набора двигателем оборотов с одного значения до другого;

- Тест "Баланс индикаторной мощности" (иногда его называют "Разгон-Выбег") подразделяется на два теста - тест "Составляющая механических потерь баланса индикаторной мощности" и тест "Эффективная составляющая баланса индикаторной мощности". Индикаторная мощность - это мощность, полученная от сгорания топлива в цилиндрах. К сожалению, использовать ее полностью невозможно - так как часть мощности расходуется на преодоление сил трения и пр. Эти потери мощности составляют "механические потери", а то, что осталось, составляет "эффективную мощность". Составляющая механических потерь определяется как отношение мощности механических потерь к индикаторной мощности. Эффективная составляющая определяется как отношение эффективной мощности к индикаторной мощности (фактически это механический КПД (коэффициент полезного действия) двигателя) - для современных автомобильных двигателей, как правило, не превышает 0,70-0,85 (70-85%).

Информация о работе Мотор-тестер