Расчет эмпирических характеристик распределения. Проверка гипотезы о принадлежности данных нормальному закону распределения

Автор работы: Пользователь скрыл имя, 24 Мая 2012 в 18:10, курсовая работа

Описание работы

Целью данной курсовой работы предусматривается определение периодичности технического обслуживания, допустимого (упреждающего) значения диагностического параметра, а также расчет вероятности безотказной работы заданного агрегата, узла или системы автомобиля.

Содержание работы

Введение. 4
1 Определение периодичности профилактики. 5
1.1 Расчет эмпирических характеристик распределения. 5
1.2 Расчет теоретических параметров распределения. 11
1.3 Расчет периодичности технического обслуживания. 15
2. Расчет допустимого значения диагностического параметра. 16
3. Расчет надежности (безотказности) заданного механизма, агрегата, системы. 17
Заключение 18
Список литературы 19
Приложения 20

Файлы: 1 файл

Курсовой по теории надежности.doc

— 782.00 Кб (Скачать файл)

Таблица П2 – Значения функции

yj   0 1 2 3 4 5 6 7 8 9
0,0 0, 0000 0080 0159 0239 0319 0399 0478 0558 0638 0717
0,1 0, 0797 0876 0955 1034 1113 1192 1271 1350 1428 1507
0,2 0, 1585 1663 1741 1819 1897 1974 2051 2128 2205 2282
0,3 0, 2358 2434 2510 2586 2661 2737 2812 2886 2960 3035
0,4 0, 3108 3192 3255 3328 3401 3473 3545 3616 3688 3759
0,5 0, 3829 3900 3969 4039 4108 4177 4245 4313 4381 4448
0,6 0, 4515 4581 4646 4713 4778 4843 4908 4971 5035 5098
0,7 0, 5161 5223 5385 5346 5407 5468 5527 5587 5646 5705
0,8 0, 5763 5821 5878 5935 5991 6047 6102 6157 6211 6265
0,9 0, 6319 6372 6424 6476 6528 6579 6629 6680 6729 6778
1,0 0, 6827 6875 6923 6970 7017 7063 7109 7154 7199 7243
1,1 0, 7287 7330 7373 7415 7457 7499 7539 7580 7620 7660
1,2 0, 7699 7737 7775 7812 7850 7887 7923 7959 7994 8030
1,3 0, 8064 8098 8132 8165 8197 8230 8262 8293 8324 8355
1,4 0, 8385 8415 8444 8473 8501 8529 8557 8584 8611 8638
1,5 0, 8664 8689 8715 8740 8764 8789 8812 8836 8859 8882
1,6 0, 8904 8926 8948 8969 8990 9011 9031 9051 9070 9090
1,7 0,9 1087 1273 1457 1637 1714 1988 2159 2327 2492 2655
1,8 0,9 2814 2970 3124 3275 3423 3569 3711 3852 3989 4224
1,9 0,9 4257 4387 4514 4639 4762 4882 5000 5116 5230 5341
2,0 0,9 5450 5557 5662 5764 5865 5964 6060 6155 6247 6338
2,1 0,9 6427 6514 6599 6683 6765 6844 6926 6999 7074 7148
2,2 0,9 7219 7289 7358 7425 7491 7555 7619 7679 7739 7798
2,3 0,9 7855 7911 7965 8019 8072 8123 8172 8221 8260 8315
2,4 0,9 8360 8405 8448 8490 8531 8571 8611 8649 8686 8723
2,5 0,9 8758 8793 8826 8859 8891 8923 8953 8983 9012 9040
2,6 0,9 9068 9095 9121 9146 9171 9195 9219 9241 9263 9285
2,7 0,9 9307 9327 9347 9367 9386 9404 9422 9439 9456 9473
2,8 0,9 9489 9505 9520 9535 9549 9563 9576 9590 9602 9615
2,9 0,9 9627 9639 9647 9655 9663 9671 9679 9686 9693 9700
3,0 0,9 9730 9739 9747 9755 9763 9771 9779 9786 9793 9800
3,1 0,9 9806 9813 9819 9825 9831 9837 9842 9846 9853 9858
3,2 0,9 9863 9867 9872 9876 9880 9885 9889 9892 9896 9900
3,3 0,9 9903 9907 9910 9912 9914 9919 9922 9925 9928 9930
3,4 0,9 9933 9935 9937 9940 9942 9944 9946 9948 9950 9952
3,5 0,9 9953 9955 9957 9958 9960 9961 9963 9964 9966 9967
3,6 0,9 9968 9969 9971 9972 9973 9974 9975 9976 9977 9978
3,7 0,9 9978 9979 9980 9981 9982 9982 9983 9984 9984 9985
3,8 0,9 9986 9986 9987 9987 9988 9988 9989 9989 9990 9990
3,9 0,99 9904 9908 9911 9915 9919 9922 9925 9928 9931 9934
4,0 0,99 9937 9939 9942 9944 9946 9949 9951 9953 9955 9957
4,1 0,99 9959 9960 9962 9964 9965 9967 9968 9969 9971 9972
4,2 0,99 9973 9974 9976 9977 9978 9979 9980 9980 9981 9982
4,3 0,99 9983 9984 9984 9985 9986 9986 9987 9988 9988 9989

Таблица П3 –  Значение c2 в зависимости от доверительной вероятности γ и числа степени свободы

Вероятность γ
0,99 0,95 0,90 0,80 0,70 0,50 0,30 0,20
1 0,00016 0,0039 0,016 0,064 0,148 0,455 1,07 1,64
2 0,020 0,103 0,211 0,446 0,713 1,386 2,41 3,22
3 0,115 0,352 0,584 1,005 1,424 2,366 3,66 4,64
4 0,30 0,71 1,06 1,65 2,19 3,36 4,9 6,0
5 0,55 1,14 1,61 2,34 3,00 4,35 6,1 7,3
6 0,87 1,63 2,2 3,07 3,83 5,35 7,2 8,6
7 1,24 2,17 2,83 3,82 4,67 6,34 8,4 9,8
8 1,65 2,73 3,49 4,59 5,53 7,34 9,5 11,0
9 2,09 3,32 4,17 5,38 6,39 8,35 10,7 12,2
10 2,56 3,94 4,86 6,18 7,27 9,34 11,8 13,4
11 3,1 4,6 5,6 7,0 8,1 10,3 12,9 14,6
12 3,6 5,2 6,3 7,8 9,0 11,3 14,0 15,8
13 4,1 5,9 7,0 8,6 9,9 12,3 15,1 17,0
14 4,7 6,6 7,8 9,5 10,8 13,3 16,2 18,2
15 5,2 7,3 8,5 10,3 11,7 14,3 17,3 19,3
16 5,8 8,0 9,0 11,2 12,6 15,3 18,4 20,5
17 6,4 8,7 10,1 12,0 13,5 16,3 19,5 21,6
18 7,0 9,4 10,9 12,9 14,4 17,3 20,6 22,8
19 7,6 10,1 11,7 13,7 15,4 18,3 21,7 23,9
20 8,3 10,9 12,4 14,6 16,3 19,3 22,8 25,0
21 8,9 11,6 13,2 15,4 17,2 20,3 23,9 26,2
22 9,5 12,3 14,0 16,3 18,1 21,3 24,9 27,3
23 10,2 13,1 14,8 17,2 19,0 22,3 16,0 28,4
24 10,9 13,8 15,7 18,1 19,9 23,3 27,1 29,6
25 11,5 14,6 16,5 18,9 20,9 24,3 28,1 30,7
26 12,2 15,4 17,3 19,8 21,8 25,3 29,3 31,8
27 12,9 16,2 18,1 20,7 22,7 26,3 30,3 32,9
28 13,6 16,9 18,9 21,6 23,6 27,3 31,4 34,0
29 14,3 17,7 19,8 22,5 24,6 28,3 32,5 35,1
30 15,0 18,5 20,6 23,4 25,5 29,3 33,5 36,3

 

Таблица П4 –  Значения β1

Rg β1 при ν
0.2 0.4 0.6 0.8
0.85 0.80 0.55 0.40 0.25
0.95 0.67 0.37 0.20 0.10


Информация о работе Расчет эмпирических характеристик распределения. Проверка гипотезы о принадлежности данных нормальному закону распределения