Автор работы: Пользователь скрыл имя, 23 Июня 2014 в 18:03, курсовая работа
Цель данной курсовой работы – создание блок-схемы в среде MatLab Simulink, наглядно иллюстрирующей алгоритм расчета параметров модели многоканальной СМО с отказами и формирование рекомендаций по выбору оптимального количества каналов обслуживания.
Для достижения поставленной цели выделим основные задачи:
- подробное описание многоканальной СМО с отказами;
- выбор контрольного примера и постановка задачи;
- определение алгоритма решения;
- создание имитационной модели в среде MATLAB (Simulink);
- анализ результатов и обоснование выбора оптимального количества каналов для исследуемой СМО
Содержание
ВВЕДЕНИЕ
На сегодняшний день метод имитационного моделирования является одним из наиболее эффективных методов исследования процессов и систем самой различной природы и степени сложности. Сущность метода состоит в составлении модели, имитирующей процесс функционирования системы, и расчета характеристик этой модели с целью получения статистических данных моделируемой системы. Используя результаты имитационного моделирования, можно описать поведение системы, оценить влияние различных параметров системы на ее характеристики, выявить преимущества и недостатки предлагаемых изменений, прогнозировать поведение системы.
Лучшей иллюстрацией области применения имитационного моделирования являются системы массового обслуживания. В терминах СМО описываются многие реальные системы: вычислительные системы, узлы сетей связи, магазины, производственные участки – любые системы, где возможны очереди и отказы в обслуживании. Системы массового обслуживания отличаются высокой наглядностью отображения моделируемых объектов и вследствие этого сравнительной простотой перехода от реальных объектов к соответствующим СМО.
Цель данной курсовой работы – создание блок-схемы в среде MatLab Simulink, наглядно иллюстрирующей алгоритм расчета параметров модели многоканальной СМО с отказами и формирование рекомендаций по выбору оптимального количества каналов обслуживания.
Для достижения поставленной цели выделим основные задачи:
- подробное описание многоканальной СМО с отказами;
- выбор контрольного примера и постановка задачи;
- определение алгоритма решения;
- создание имитационной модели в среде MATLAB (Simulink);
- анализ результатов и обоснование выбора оптимального количества каналов для исследуемой СМО
В жизни часто встречаются системы, предназначенные для многоразового использования при решении однотипных задач: очередь в магазине, обслуживание автомобилей на автозаправках, билетные кассы и т.п. Возникающие при этом процессы получили название процессов обслуживания, а системы — систем массового обслуживания (СМО).
Процессы поступления и обслуживания заявок в СМО являются случайными, что обусловлено случайным характером потока заявок и длительности их обслуживания.
Будем рассматривать СМО с марковским случайным процессом, когда вероятность состояния СМО в будущем зависит только от ее настоящего состояния и не зависит от прошлого (процесс без последействия или без памяти). Условие марковского случайного процесса необходимо, чтобы все потоки событий, при которых система переходит из одного состояния в другое (потоки заявок, потоки обслуживания и т.д.), были пуассоновскими. Пуассоновский поток событий обладает рядом свойств, в том числе свойствами отсутствия последействия, ординарности, стационарности.
В простейшем пуассоновском потоке событий случайная величина распределена по показательному закону:
, (1.1)
где λ – интенсивность потока.
Целью теории систем массового обслуживания является выработка рекомендаций по рациональному их построению, организации работы и регулированию потока заявок. Отсюда вытекают задачи, связанные с теорией массового обслуживания: установление зависимостей работы СМО от ее организации, характера потока заявок, числа каналов и их производительности, правил работы СМО.
Основой СМО является определенное число обслуживающих устройств - каналов обслуживания.
Назначение СМО состоит в обслуживании потока заявок (требовании), представляющих последовательность событий, поступающих нерегулярно и в заранее неизвестные и случайные моменты времени. Само обслуживание заявок также имеет непостоянный и случайный характер. Случайный характер потока заявок и времени их обслуживания обусловливает неравномерность загрузки СМО: на входе могут накапливаться необслуженные заявки (перегрузка СМО) либо заявок нет или их меньше, чем свободных каналов (недогрузка СМО).
Таким образом, в СМО поступают заявки, часть из которых принимается на обслуживание каналами системы, часть становится в очередь на обслуживание, а часть покидает систему необслуженными.
Основными элементами СМО являются:
Эффективность функционирования СМО определяется ее пропускной способностью — относительным числом обслуженных заявок.
По числу каналов n все СМО разделяются на одноканальные (n = 1) и многоканальные (n > 1). Многоканальные СМО могут быть как однородными (по каналам), так и разнородными (по продолжительности обслуживания заявок).
По дисциплине обслуживания различаются три класса СМО:
Различают открытые (поток заявок не ограничен), упорядоченные (заявки обслуживаются в порядке их поступления) и однофазные (однородные каналы выполняют одну и ту же операцию) СМО.
Эффективность работы систем массового обслуживания характеризуют показатели, которые можно разбить на три групп:
- абсолютная пропускная способность (А) - среднее число заявок, обслуживаемых в единицу времени, или интенсивность выходящего потока обслуженных заявок (это часть интенсивности входящего потока заявок);
- относительная пропускная способность (Q) - отношение абсолютной пропускной способности к среднему числу заявок, поступивших в систему за единицу времени;
- средняя продолжительность периода занятости СМО ( );
- интенсивность нагрузки (ρ) показывает степень согласованности входного и выходного потоков заявок канала обслуживания и определяет устойчивость СМО;
- коэффициент использования СМО - средняя доля времени, в течение которого система занята обслуживанием заявок.
2. Показатели качества обслуживания заявок:
- среднее время ожидания заявки в очереди ( );
- среднее время пребывания (обслуживания) заявки в СМО ( );
- вероятность отказа заявки в обслуживании без ожидания ( );
- вероятность немедленного приема заявки ( );
- закон распределения времени ожидания заявки в очереди в СМО;
- среднее число заявок в очереди ( );
- среднее число заявок, находящихся в СМО ( ).
3. Показатели эффективности функционирования пары "СМО - потребитель" (вся совокупность заявок или их источник, например средний доход в единицу времени от СМО). Эта группа полезна, когда доход от СМО и затраты на ее обслуживание измеряются в одних и тех же единицах, и отражает специфику работы СМО.
Система M/M/n/0 представляет собой n- линейную СМО с r местами ожидания (r=0), в которую поступает пуассоновский поток интенсивности , а времена обслуживания заявок независимы и при этом время обслуживания каждой заявки на любом приборе распределено по экспоненциальному закону с параметром . В случае, когда , заявка, поступившая в переполненную систему (т.е. когда заняты все приборы и все места ожидания), теряется и вновь в нее не возвращаются. Система M/M/n/r также относится к экспоненциальным СМО.
Уравнения, описывающие распределение заявок в системе
Рассматривая -число заявок в системе в момент t, нетрудно показать, что процесс является однородным Марковским процессом с множеством состояний . Ниже мы покажем, что процесс представляет собой ПРГ.
Выпишем систему дифференциальных уравнений Колмогорова. Для этого рассмотрим моменты t и . Предполагая, что в момент t процесс v(t) пребывает в состоянии i, определим, куда он может попасть в момент , и найдем вероятности его переходов за время . Здесь возможны три случая.
А. i<n. В этом случае все находящиеся в системе заявки обслуживаются на приборах (если i=0- заявок в системе вообще нет). Вероятность того, что за время процесс не выйдет из состояния i равна произведению вероятности не поступления заявки за время на вероятность того, что за это время не обслужится ни одна из i заявок, т.е. равна . Вероятность перехода за время в состояние i+1 равна - вероятности поступления заявки в систему. Наконец поскольку каждый прибор закончит за время обслуживание находящейся в нем заявки с вероятностью , а таких приборов i, то вероятность перехода в состояние i-1 равна . Остальные переходы имеют вероятность .
Б. n≤i<n+r. Этот случай отличается от первого тем, что обслуживаются ровно n заявок, т.е. все приборы заняты. Значит, вероятность через время остаться в состоянии i равна , перейти в состояние i-1 за это же время -
Таким образом, мы фактически доказали, что процесс является процессом рождения и гибели с интенсивностями при при и при .
Обозначая через , распределение числа заявок в системе в момент t, получаем следующие выражения для в случае, когда :
, ,
, .
Если же , то, что очевидно последнего выражения не будет, а в предпоследнем индекс i может принимать значения i=n,n+1,… .
Вычитая теперь из обеих частей равенства, деля на и переходя к пределу
при , получаем систему дифференциальных уравнений: , , , (1.2) .
Стационарное распределение очереди
В случае конечного r, например r=0, процесс является эргодическим. Также он будет эргодическим в случае при выполнении условия, о котором будет сказано ниже. Тогда из (1) при получаем, что стационарные вероятности состояний pi удовлетворяют систему уравнений:
, , (1.3) , .
Поясним теперь вывод системы уравнений (1.3), исходя из принципа глобального баланса. Так, например, согласно диаграмме переходов для фиксированного состояния i, , имеем, что суммарные потоки вероятностей входящий в состояние i и выходящий из него равны, соответственно, и .
l l l l l l
m 2m 3m (i-1)m (i+1)m
l l l l l l l
(i+1)m (i+2)m (n-1)m nm nm nm nm
Рисунок 1 Диаграмма переходов
Исходя теперь из принципа локального баланса, что баланс потоков вероятностей между состояниями i и i+1 отражается равенствами : , , (1.4) являющимися уравнениями локального баланса для данной СМО. Проверка справедливости равенств (1.4) производится непосредственным суммированием системы уравнений (1.3) по i при i=0,1,…,n+r-1.
Из соотношения (1.4), выражая рекуррентно вероятности через ,
получаем:
где , а определяется из условия нормировки , т.е. . (1.6)
Ясно, что формулы можно получить из общих соотношений для стационарных вероятностей состояний процесса рождения и гибели при указанных выше значениях и .
Если , то стационарный режим существует при любом .
Выпишем теперь выражения для некоторых характеристик очереди.
Стационарная вероятность немедленного обслуживания заявки (обслуживания без ожидания) совпадает со стационарной вероятностью того, что в системе находится 0,1,…,n-1 заявок, т.е. .
Рассмотрим интересующий нас частный случай, когда r=0. тогда в системе отсутствуют места для ожидания (система с потерями M/M/n/0) и такая система носит название системы Эрланга. Система Эрланга описывает процессы, происходящие в простейших телефонных сетях, и названа так в честь А. К. Эрланга, впервые её исследовавшего. Для системы M/M/n/0 стационарные вероятности определяются формулой Эрланга
, .
Следовательно, стационарная вероятность потери заявки определяется формулой:
,
которую также называют формулой Эрланга.
Наконец, когда , то мы имеем систему , для которой при любом стационарные вероятности существуют и, как следует из формул Эрланга при , имеют вид
, .
Вернемся теперь к соотношениям (1.4). Суммируя эти равенства по i=0,1,…,n+r-1 , получаем ,
где - среднее число занятых приборов. Выписанное соотношение выражает равенство интенсивностей принятого в систему и обслуживаемого ею потоков в стационарном режиме. Отсюда мы можем получить выражение для пропускной способности системы , определяемой как среднее число заявок, обслуженных системой в единицу времени, и называемой иногда интенсивностью выхода: .