Формализация научного знания, языки науки

Автор работы: Пользователь скрыл имя, 28 Декабря 2010 в 01:38, реферат

Описание работы

Формализация научного знания - особый подход к научному познанию заключающийся в использовании специального языка - языка науки. Применение этого языка основано на использовании специфической для каждой науки системы символов, позволяющей корректно абстрагироваться от содержания описывающих реальные явления теоретических положений. Эти символы - элементы формальной системы - языка науки, образуют своего рода алфавит. Кроме алфавита для формализации необходимы принципы построения «слов», то есть формул их этих элементов, а также принципы преобразования формул данной формальной системы. Таким образом, формируется формальная знаковая система - искусственный язык, приспособленный для той или иной частной дисциплины. Черезвычайно важное свойство такой системы состоит в том, что у естествоиспытателя есть возможность исследования на ее основе какого-либо явления без непосредственного к нему обращения, формальным способом, оперируя только символами.

Файлы: 1 файл

КСЕ.rtf

— 494.78 Кб (Скачать файл)

Формализация научного знания, языки науки.

                Формализация научного знания - особый подход к научному познанию заключающийся в использовании специального языка - языка науки.  Применение этого языка основано на использовании специфической для каждой науки системы символов, позволяющей корректно абстрагироваться от содержания описывающих реальные явления теоретических положений. Эти символы - элементы формальной системы - языка науки, образуют своего рода алфавит. Кроме алфавита для формализации необходимы принципы построения «слов», то есть формул их этих элементов, а также принципы преобразования формул данной формальной системы. Таким образом, формируется формальная знаковая система - искусственный язык, приспособленный для той или иной частной дисциплины. Черезвычайно важное свойство такой системы состоит в том, что у естествоиспытателя есть возможность исследования на ее основе какого-либо явления без непосредственного к нему обращения, формальным способом, оперируя только символами. Кроме этого, формализация научного знания позволяет обеспечить краткость и чёткость научной информации. Важным достоинством научного языка является однозначность терминов (моносемия) , в то время как обыденному (естественному) языку свойственна полисемия.

      К очевидным недостаткам научного языка следует отнести то, что он лишён гибкости, универсальности и богатства обычного (повседневного) языка.

      Первичным языком, который используют в процессе научного уяснения фактов, чаще всего является язык математики.

      Язык вообще и научный в частности был создан как средство для передачи информации и как основа мышления. Научный язык содержит большое число терминов, которые являются инструментами для создания и передачи информации. Понятия и термины вырабатывались постепенно, в процессе использования и совершенствования научного языка. Термины могут быть определены, естественно, только с помощью других понятий и терминов, и, в конце концов, мы должны будем опираться на некоторые первичные понятия, которые придется принимать без определений.

      В древнегреческой  натурфилософии проблема выражения понятий в языке была важнейшим предметом исследований со времен Сократа, жизнь которого представляла собой (если следовать ее художественному изображению в диалогах Платона) постоянное обсуждение содержания и понятий, а также границ и средств выражения этих понятий. Чтобы создать прочное основание для научного мышления, Аристотель в своих работах, посвященных логике, анализировал языковые формы и исследовал формальную сторону процесса вывода заключений  независимо от их содержания. В этом он достиг такой степени абстракции, которая до него не была известна. Фактически Аристотель создал основы научного языка.

      Возможность использования формализированной знаковой системы - научного языка - черезвычайно важна для процесса познания. Но при этом следует иметь в виду, что эффективная формализация научной дисциплины возможна только при учете ее содержательной стороны. Математическое уравнение само по себе еще не представляет научной теории, поскольку математическим символам необходимо придать конкретное эмпирическое содержание, наполнение

      Являясь эффективным средством научного познания, язык современной науки существенно отличается от обычного повседневного языка человеческого общения. Он содержит много специальных терминов, в нем широко используются средства формализации. Вместе с тем следует иметь в виду, что создание единого формализованного языка науки невозможно. Дело в том, что даже достаточно богатые формализованные научные языки не удовлетворяют требованию полноты, то есть некоторое множество правильно сформулированных предложений такого языка (в том числе и истинных) не может быть выведено исключительно формальным путем внутри этого языка. Формализованные языки не могут быть единственной формой языка современной науки. В научном познании

необходимо использовать и неформализованные системы.

Но тенденция к возрастающей формализации языков всех

и особенно естественных наук является объективной и прогрессивной 

       Данный факт полностью согласуется со второй теоремой Гёделя о неполноте формальных систем, которая гласит, что логическая полнота (или неполнота) любой непротиворечивой системы не может быть доказана в рамках этой системы;  для ее доказательства или опровержения требуется применение другой системы. Укажем здесь обобщающий вывод из теоремы Гёделя - вывод, имеющий огромное философское значение: мышление человека существенно богаче дедуктивных форм мышления.

                
         
         

              Структура научного знания. 

      Особого рассмотрения заслуживает вопрос о структуре научного знания. В ней необходимо выделить три уровня: эмпирический, теоретический, философских оснований.

      На эмпирическом уровне научного знания в результате непосредственного контакта с реальностью ученые получают знания об определенных событиях, выявляют свойства интересующих их объектов или процессов, фиксируют отношения, устанавливают эмпирические закономерности.

      Для выяснения специфики теоретического познания важно подчеркнуть, что теория строится с явной направленностью на объяснение объективной реальности, но описывает непосредственно она не окружающую действительность, а идеальные объекты, которые в отличие от реальных объектов характеризуются не бесконечным, а вполне определенным числом свойств. Например, такие идеальные объекты, как материальные точки, с которыми имеет дело механика, обладают очень небольшим числом свойств, а именно, массой и возможностью находиться в пространстве и времени. Идеальный объект строится так, что он полностью интеллектуально контролируется.

      Теоретический уровень научного знания расчленяется на две части: фундаментальные теории, в которых ученый имеет дело с наиболее абстрактными идеальными объектами, и теории, описывающие конкретную область реальности на базе фундаментальных теорий.

      Сила теории состоит в том, что она может развиваться как бы сама по себе, без прямого контакта с действительностью. Поскольку в теории мы имеем дело с интеллектуально контролируемым объектом, то теоретический объект можно, в принципе, описать как угодно детально и получить как угодно далекие следствия из исходных представлений. Если исходные абстракции верны, то и следствия из них будут верны.

      Кроме эмпирического и теоретического в структуре научного знания можно выделить еще один уровень, содержащий общие представления о действительности и процессе познания - уровень философских предпосылок, философских оснований.

      Познание может быть не только научным. Научная методология познания представляет пусть весьма эффективный, но только один из способов освоения мира. Хотя применение научного метода является основой современного отношения к миру его нельзя признать универсальным, хотя бы уже в силу историчности самой науки. Научное естествознание может быть последний, но, тем не менее, - только этап в истории развития самого естествознания. Соответственно, главное, внесённое наукой в естествознание, связано с понятием методологии. Её внедрение привело к радикальной перестройке естественного языка и способствовало возникновению систем понятий, эффективно описывающих действительность.

 

      В своей основе познание - это сложный творческий процесс. Познание многолико. В некоторых процессах познания преобладают инновационные аспекты и, следовательно, в них творчество играет основную роль, а в некоторых - преобладают традиционные или консервативные аспекты и тогда инновационность отходит на второй план. Первый тип познания характерен для науки, а второй - для образования. Итак, естественнонаучное познание неразрывно связано с творчеством. Творчество по определению предполагает "сотворение" нового знания. Поэтому важно понять, как оно творится.

      Творчество не подчиняется каким-либо правилам, его нельзя рационализировать. История открытий показывает, насколько велик в них момент случайности, интуиции, вдохновения, прозрения. Их невозможно вместить в рамки каких-то правил и норм. Особенно велико значение творчества в искусстве. Художник, композитор, писатель используют лишь предельно общие рациональные правила неявным образом. Они достигают результатов, если талантливы. Талант объединяет в себе все трудноуловимые элементы творчества, без которых нет ни таланта, ни самого творчества.

      Но естественнонаучное познание отличается от художественного аналога. Разумеется, и в нём без таланта и творчества немногого можно достичь. Но, тем не менее, хотя бы немногого достичь можно. В то же время это утверждение неприменимо к искусству. В чём же дело? Оно в том, что процессы познания в естествознании рационализируются в гораздо большей степени, чем в искусстве. В естествознании можно выделить систему общих правил. Они являются общей основой научного мышления. Дифференциация и спецификация норм естественнонаучного познания становится возможной благодаря наличию общей рациональной основы познания.

      Это значит, что можно выделить нормы рационального научного познания общие для всей науки и нормы рационального научного познания для каждой дисциплины. В первом случае мы имеем дело с принципами научного познания, а во втором - с методологией и методикой познания отдельных дисциплин.

      В качестве примера общих правил познания приведём метод Декарта:

      Ничего не принимать за истинное, что не представляется ясным и отчётливым.

      Трудные вопросы делить на столько частей, сколько нужно для разрешения; начинать исследование с самых простых и удобных для познания вещей и восходить постепенно к познанию трудных и сложных.

      Останавливаться на всех подробностях, на всё обращать внимание, чтобы быть уверенным, что ничего не упущено.

      Очевидно, что эти правила познания могут быть применены в любой сфере. Однако в областях не связанных с применением строгих рациональных норм мышления эти правила не рефлексируются и исполняются неявно, интуитивно, поскольку, по сути, они являются обобщением повседневного опыта и здравого смысла.

      В качестве примера принципов научного познания приведём следующие:

      Причинность: выражает один из моментов всеобщего взаимодействия - генетическую связь явлений. Суть причинности в порождении причиной следствия.

      Критерий истины: если под истиной понимается соответствие человеческих знаний действительности, совпадение человеческой мысли и объекта, то под критерием естественнонаучной истины понимается практическая её проверка наблюдениями, опытом, экспериментами.

      Относительность научного знания: научное знание (понятия, идеи, концепции, модели, теории) относительно и ограничено. Главное - установить границы соответствия знания действительности: установить интервал адекватности.

      Одна из характерных тенденций современной науки - ее усиленная математизация: все более широкое применение языка математики и математических методов исследования в самых различных отраслях научного познания. Это связано с тем, что без познания количественных отношений в изучаемых объектах нельзя правильно отразить его качественную специфику и закономерности развития. Эти количественные отношения и есть предмет математики. Её применение в науке придает знаниям строгость и точность. Отмечая это, И.Кант утверждал, что в науке столько истины, сколько в ней математики. К.Маркс подчеркивал, что наука только тогда достигает своих вершин, точности и совершенства, когда ей удается пользоваться математикой. При этом следует иметь в виду, что применение математического аппарата возможно на сравнительно высоком уровне развития той или иной науки, когда описательный метод в ней становится подчиненным.

      Математическое кодирование явлений природы и общества позволяет понимать, управлять и предсказывать ход реальных процессов. В истории культуры это первым осознал выдающийся древнегреческий мыслитель и математик Пифагор. Он обнаружил, что высота музыкального тона инструмента связана числовой зависимостью с ее длиной. Более того, он считал, что простые числа и геометрические фигуры, заключающие в себе соразмерность, или гармонии, являются началами мира. Эти идеи через Платона, Коперника и Дж.Бруно подхватил и развил один из основателей классической механики Г.Галилей. Галилей подчеркивал, что ученый, который пожелает решить проблемы естествознания, без математики столкнется с непреодолимой задачей. Тем не менее, нельзя абсолютизировать роль математики в естествознании. Математические формулы сами по себе абстрактны и лишены конкретного содержания. Только согласованные с научным наблюдением и экспериментом научные исследования наполняют математические формулы конкретным содержанием.

Информация о работе Формализация научного знания, языки науки