Автор работы: Пользователь скрыл имя, 06 Мая 2013 в 18:53, курсовая работа
Исходя из этого, нами избрана следующая проблема исследования – это выявление педагогических условий влияния нестандартных задач на развитие мышления младших школьников. Решение данной проблемы составляет цель исследования.
Объектом исследования является процесс обучения математике в начальных классах.
Предметом исследования – влияние нестандартных задач на развитие математического мышления учащихся начальных классов.
Введение.............................................................................................................. 3
Глава 1 Проблема игровой деятельности в педагогической и методической литературе........................................................................................................... 7
1.1. Понятие об игре и её видах............................................................ 7
1.2. Особенности использования игр в 1 классе.................................23
Глава 2 Методика использования дидактических игр на уроках математики в 1 классе при изучении темы “Нумерация чисел
в пределах сотни”............................................................................................ 27
2.1. Особенности использования дидактических игр при
объяснении нового материала.................................................. 27
2.2. Способы использования дидактических игр при закреплении
материала.................................................................................... 34
2.3. Особенности применения дидактических игр при обобщении
знаний учащихся.......................................................................... 43
Заключение........................................................................................................ 49
Литература......................................................................................................... 51
Приложение....................................................................................................... 54
Гибкость мышления проявляется в умении изменять способы решения задачи, выходить за границы привычного способа действия, находить новые способы решения проблем при изменении задаваемых условий. А.Эйнштейн указывал на гибкость мышления как на характерную черту творчества.
Антиподом гибкости мышления является шаблонность мышления. Это желание следовать известной системе правил в процессе решения задачи. Шаблонность мышления нередко является следствием «натаскивания» учащихся по определённым видам типовых задач. Часто, например, школьники начинают решать незнакомую им задачу тем способом, который им «первый пришёл в голову». Именно на преодоление этого качества мышления направлены нестандартные задачи. Другое качество математического мышления – активность Она характеризуется постоянством усилий, направленных на решение некоторой проблемы, желанием обязательно решить эту проблему, изучить различные подходы к её решению.
Развитию этого качества у учащихся способствует рассмотрение различных способов решения одной и той же задачи.
Следующее качество – целенаправленность мышления, которая включает стремление осуществлять разумный выбор действий при решении какой-либо проблемы, а также стремлением к поиску наикратчайших путей её решения.
Целенаправленность мышления даёт возможность более экономичного решения многих задач, которые обычным способом решаются если не сложно, то слишком долго.
Такова, например, задача о вычислении
суммы 1+2+3+…+97+98+99+100. Поставив целью упростить
вычисление посредством применения каких-либо
законов сложения, школьник без труда
установит известный способ вычисления
этой суммы: 1+2+3+…+97+98+99+100= (1+99)+(2+98)+…+(49+51)+5+100=
Целенаправленность мышления способствует
проявлению рациональности мышления,
которая характеризуется
Рациональность мышления часто проявляется при наличии широты мышления, которая характеризуется, как способность формировать обобщённые способы действий, имеющие широкий диапазон переноса и применения к частным, умение охватить проблему в целом, не упуская при этом имеющих значение деталей; обобщить проблему, расширить область приложения результатов, полученных в процессе её разрешения.
Это качество мышления проявляется в готовности школьников принять во внимание новые для них факты в процессе уже знакомой им деятельности. Так, например, изучив распределительный закон умножения относительно сложения, записанный в форме а*(в+с)= ав+ас, учащиеся проявят широту мышления, если сразу сумеют применить этот закон в вычислении: 2,5 *73,7 + 26,3 * 2,5.
Глубина мышления характеризуется умением выявлять, сущность которого из изучаемых фактов в их взаимосвязи с другими фактами.
Известно, что познание происходит двояко: в сознании отражается не только сам объект познания, но и его фон, представляющий совокупность связанных с этим объектом различных свойств его самого и других, связанных с ним объектов.
Процесс отделения фона от самого объекта – сложный процесс. Величина фона зависит от умений изучить этот объект в его существенных свойствах достаточно глубоко.
Таким образом, глубина мышления проявляется, прежде всего, в умении отделить главное от второстепенного, обнаружить логическую структуру рассуждения, отделить то, что строго доказано, от того, что принято «на веру». Глубина мышления особенно ярко проявляется при решении такого вида нестандартных задач, как математические софизмы.
Все рассмотренные выше качества могут развиться лишь при наличии активности мышления, которая характеризуется постоянством усилий, направлены на решение некоторой задачи, желанием обязательно решить поставленную проблему, изучить различные подходы к её решению, исследовать различные варианты постановки этой проблемы в зависимости от изменения условий.
Активность мышления у учащихся проявляется также в желании рассмотреть различные способы решения одной и той же задачи, обратится к исследованию полученного результата.
Так, например, учащиеся проявят определенную активность мышления, если спросят учителя: «Почему на нуль делить нельзя?».
Учитель будет способствовать развитию у школьников активности мышления, если сумеет убедить их в том, что принятое в математике условие о невозможности деления на нуль разумно. В самом деле, проверка действия деления умножением говорит о том, что при делении на нуль мы не получаем никакого результата (пусть а = 0 и 0: 0 =n , где n – любое число, так как n * 0 = 0).
Качество мышления, противоположное данному качеству, есть пассивность мышления. Оно возникает в результате формального усвоения математических знаний.
В числе качеств математического мышления важное место занимает критичность мышления, которая характеризуется умением оценить правильность выбранных путей решения поставленной проблемы, получаемые при этом результаты с точки зрения их достоверности, значимости.
В процессе обучения математике это качество мышления проявляется склонностью к различного вида проверкам, грубым прикидкам найденного результата, а также к проверке умозаключений, сделанных с помощью индукции, аналогии и интуиции.
Критичность мышления школьников проявляется также в умении найти и исправить собственную ошибку, проследить заново весь ход рассуждения, чтобы натолкнуться на противоречие.
С критичностью мышления тесно связана
доказательность мышления, характеризуемая
умением терпеливо и
Наконец, к числу важных качеств мышления относится организованность памяти. Память каждого школьника является необходимым звеном в его познавательной деятельности, зависит от её характера, целей, мотивов и конкретного содержания.
Организованность памяти означает способность к запоминанию, долговременному сохранению, быстрому и правильному воспроизведению основной учебной информации и упорядоченного опыта.
Понятно, что в обучении математике следует развивать у школьников как оперативную, так и долговременную память; обучать их запоминанию наиболее существенного, общих методов и приёмов решения задач; формировать умение систематизировать свои знания и опыт.
Организованность памяти даёт возможность соблюдать принцип экономии в мышлении. Поэтому нецелесообразно загружать память учащихся ненужной или незначительной информацией, не накапливать у них опыт учебной деятельности, бесполезной для дальнейшего. Так, например, до недавнего времени школьники «разучивали» решение типовых текстовых задач, не имеющих большого познавательного значения; это весьма отрицательно сказывалось и на развитии их памяти.
В процессе обучения математике развитию и укреплению памяти школьников способствуют:
а) мотивация изучения;
б) составление плана учебного материала, подлежащего запоминанию;
в) широкое использование в
Все перечисленные качества математического
мышления сильно взаимосвязаны и
проявляются в учебной
Специфика математического мышления проявляется не только в особых качествах мышления, но и в том, что для них характерны особые формы мышления: конкретное, абстрактное, функциональное, интуитивное мышление.
Конкретное (предметное) мышление – это мышление в тесном взаимодействии с конкретной моделью объекта. Различаются две формы конкретного мышления:
1) неоперативное (наблюдение, чувственное восприятие);
2) оперативное (непосредственные действия с конкретной моделью объекта).
Неоперативное, конкретное мышление
чаще всего проявляется у
Детям демонстрируются два сосуда
одинаковой формы и размеров, содержащие
поровну тёмную жидкость. Дети легко
устанавливают равенство
Дело в том, что неоперативное мышление детей ещё непосредственно и полностью подчинено их восприятию и потому они пока не могут отвлечься, абстрагироваться с помощью понятий от некоторых наиболее бросающихся в глаза свойств рассматриваемого предмета. В частности, думая о первом сосуде, дети смотрят на новый сосуд и им представляется, что жидкость в нём занимает больше места, чем раньше, так как уровень жидкости стал выше. Их мышление, протекающее в форме наглядных образов, приводит к выводу, следуя за восприятием, что жидкость в сосудах стало не поровну
Сам Пиаже объясняет ошибочные ответы детей отсутствием у них способностей к особым мыслительным операциям (постоянство целого, устойчивое отношение части к целому), без формирования которых невозможно овладение понятием натурального числа.
Вместе с тем Ж. Пиаже утверждает, что оперативное конкретное мышление является более действенным для подготовки детей к овладению абстрактными понятиями. Самостоятельная мыслительная деятельность выделяется именно по мере развития практической деятельности, лежащей в основе развивающейся психики ребёнка.
Конкретное мышление играет большую
роль в образовании абстрактных
понятий, в конструировании особых
свойств математического
Абстрактное мышление тесно связано с мыслительной операцией, называемой абстрагированием. Абстрагирование имеет двойственный характер: негативный (отвлекаются от некоторых сторон или свойств изучаемого объекта) и позитивной (выделяют определённые стороны или свойства этого же объекта, подлежащие изучению).
Поэтому, «абстрактным мышлением называют мышление, которое характеризуется умением мысленно отвлечься от конкретного содержания изучаемого объекта в пользу его общих свойств, подлежащих изучению»1
Абстрактное мышление может проявляться в процессе изучения математике:
а) в явном виде. Например, рассматривая в курсе геометрии понятие геометрического тела, мы отвлекаемся от всех свойств реальных тел, кроме формы, размеров;
б) в неявном виде. Например, при счёте предметов конкретного множества мы неявно отвлекаемся от свойств каждого отдельного предмета, полагая, что все предметы одинаковы.
Абстрактное мышление можно подразделить на:
аналитическое мышление;
логическое мышление;
пространственное мышление.
Аналитическое мышление характеризуется чёткостью отдельных этапов в познании, полным осознанием, как его содержания, так и применяемых операций. Аналитическое мышление не выступает изолированно от других видов абстрактного мышления. Этот вид мышления тесно связан с мыслительной операцией анализа.
Логическое мышление характеризуется умением выводить следствия из данных предпосылок, умением вычленять частные случаи из некоторого общего положения, умением теоретически предсказывать конкретные результаты. Развитию логического мышления способствует решение логических нестандартных задач.
Пространственное мышление характеризуется умением мысленно конструировать пространственные образы или схематические конструкции изучаемых объектов и выполнять над ними операции, соответствующие тем, которые должны были быть выполнены над самими объектами.
С этим типом мышления тесно связано способность учащихся выразить при помощи схемы условие или решением текстовой задачи.
«Интуиция - особый способ познания, характеризующийся непосредственным постижением истины. К области интуиции принято относить внезапно найденное решение задачи, долго не поддававшейся логическим усилиям».
Функциональное мышление, характеризуемое
осознанием динамики общих и частных
соотношений между
представление математических объектов в движении, изменении;
повышенное внимание к прикладным аспектам математики, к причинно-следственным связям.
В психологии до настоящего времени широко распространены представления о возрастных особенностях математического мышления школьника, исходящие из ранних исследований Ж. Пиаже. По мнению Пиаже, ребёнок до 12 лет мыслит наглядно-конкретным образом и только к 12 годам становится способным к абстрактному мышлению. Но исследования Д. Б. Эльконина, В. В. Давыдова, Л. В. Занкова, А. В. Скрипченко и других показали, что при изменении содержания и методики преподавания возможны серьёзные сдвиги особенностей развития математического мышления в более младший возраст.
Рассмотрим возрастные особенности математического мышления учащихся начальных классов.
Под влиянием обучения в школе у
детей этого возраста возникает
способность осматривать в
Информация о работе Методика использования дидактических игр на уроках математики в начальной школе