Автор работы: Пользователь скрыл имя, 19 Ноября 2014 в 16:26, курсовая работа
Целью исследования является оценка экологического состояния придорожной территории, для достижения поставленной цели необходимо решить следующие задачи:
-исследовать содержание загрязняющих веществ в снежном покрове придорожной территории;
-определить рН атмосферных осадков;
-рассчитать коэффициент концентрации загрязняющих веществ и показатель химического загрязнения атмосферных осадков
Введение………………………………………………………………………………4
1 Анализ литературных данных по проблеме загрязнения окружающей среды автомобильным транспортом………………………………………………………..5
Характеристика автомобильно-дорожного комплекса в России……............5
Характеристика загрязняющих веществ…………………………….................6
Отработанные газы двигателей, характеристика групп……………………...8
Характеристика смогов……………………………………………….................9
Влияние загрязняющих веществ на почву…………………………………....11
Влияние загрязняющих веществ на ОС………………………...…………….12
1.6.1.Влияние загрязняющих веществ на качество атмосферного воздуха……………………………………………………………………………….12
1.6.2 Влияние загрязняющих веществ на гидросферу……………………………13
1.6.3 Характеристика шумовых эффектов от автомобилей…………………........14
Влияние загрязняющих веществ на здоровье человека…………………….15
Мероприятия направленные на снижение загрязнения в городах…………17
1.8.1 Мероприятия по защите от автомобильного шума………………………….17
Пути экологизации автомобильного топлива………………………………18
1.8.3 Использование нетрадиционных видов топлива……………………………18
Выводы по первой главе…………………………………………………………….24
2 Исследования процессов формирования пылегазовых примесей в атмосферном воздухе придорожных территорий улиц города Оренбурга…………………………………………………………………………….25
2.1 Характеристики объекта исследования и применяемых методик …………………………………………………………………………………………25
2.1.1 Характеристика объекта исследования………………………………………25
2.1.2 Методика определения взвешенных частиц……………………...................26
2.1.3 Методика определения рН водных объектов……………………..................27
2.1.4 Методика определения содержания хлорид-ионов ………….......................28
2.1.5 Методика определения содержания сульфидов и гидросульфидов в атмосферных осадках…………………………………………………......................29
2.1.6 Методика определения содержания карбонат- и гидрокарбонат-ионов в атмосферных осадках…………………………………………………………….…30
2.1.7 Методика определения содержания кальция и магния в атмосферных осадках…………………………………………………..……………………………30
2.1.8 Методика определения содержания сульфат-ионов в атм. осадках………………………………………………………………………………..31
2.1.9 Определение содержания ионов аммония в атмосферных осадках………………………………………………………………………………..32
2.1.10 Методика определения цинка в природных водах……………………….33
2.1.11 Математическая обработка результатов исследования…………………..34
2.2 Исследование содержания загрязняющих веществ в снежном покрове……35
2.3 Интегральная оценка загрязнения атмосферных осадков……………………42
2.4 Исследование экологической нагрузки загрязняющих веществ…………….45
2.5 Мероприятия направленные на снижение загрязняющих веществ …………50
Выводы по второй главе…………………………………………………………….51
Заключение…………………………………………………………………………..53
Список использованных источников………………………………….....................55
5.Соблюдать осторожность
при работе со стеклянным
После каждого определения вымывают электроды в дистиллированной воде и высушивают фильтрованной бумагой. По окончании работы с прибором электроды помещают в стакан с дистиллированной водой.
2.1.4 Методика определения содержания хлорид-ионов в атмосферных осадках
Реактивы и оборудование. Конические колбы на 200 мл; пипетки на 10 мл; цилиндры мерные на 100 мл; бюретки для титрования; дистиллированная вода; 0,01 н раствор AgNO3: растворяют 1,6987 г AgNO3 в дистиллированной воды; 0,01 н раствор NaCI, готовится из фиксанала; 5 %-ный раствор К2СrО4.
Общие положения. Высокая растворимость хлоридов объясняет широкое распространение их во всех природных водах. В проточных водоемах содержание хлоридов обычно невелико (20-ЗО мг/л). Незагрязненные грунтовые воды в местах с несолончаковой почвой обычно содержат до 30-50 мг/л хлор-иона.
В водах, фильтрующихся через солончаковую почву, в 1 л могут содержаться сотни и даже тысячи миллиграммов хлоридов. Вода, содержащая хлориды в концентрации более 350 мг/л, имеет солоноватый привкус, а при концентрации хлоридов 500-1000 мг/л неблагоприятно влияет на желудочную секрецию. Содержание хлоридов является показателем загрязнения подземных и поверхностных водоисточников и сточных вод. Определение хлоридов ведется по методу Мора.
Принцип метода Мора основан на осаждении хлоридов азотнокислым серебром в присутствии хромата калия К2СrО4. При наличии в растворе хлоридов AgNO3 связывается с ними, а затем образует хромат серебра оранжево-красного цвета.
NaCI + AgNO3 →AgCI↓+ NaNO3
2AgNO3 + K2CrO4 → Ag2CrO4↓ + 2KNO3
Ход работы. Вначале устанавливают титр AgNO3. Для этого в коническую колбу на 200 мл вносят 10 мл раствора NaCI и 90 мл дистиллированной воды, прибавляют 5 капель К2СгО4. Содержимое колбы титруют раствором AgNO3 до перехода лимонно-желтой окраски мутного раствора в оранжево-красную, не исчезающую в течение 15-20 с.
При содержании хлоридов менее 250 мг/л берут 100 мл фильтрованной испытуемой воды. При большем содержании хлоридов берут 10-50 мл. Испытуемую воду наливают в две конические колбы, доводят до 100 мл дистиллированной водой, прибавляют 5 капель раствора К2СгО4. Раствор в одной колбе титруют AgNO3, a вторая колба используется для контроля.
Содержание хлор-иона в воде рассчитывается по формуле (2.1)
Х=V∙35,5,
где X - содержание хлор-иона в мг/л;
35,5 - эквивалентное количество хлора, соответствующее 1 мл 0,01 н раствору AgNO3 мг;
V - объем исследуемой пробы, мл.
2.1.5 Методика определения содержания сульфидов и гидросульфидов в атмосферных осадках
Реактивы и оборудование. Кристаллический иодид калия, 0,5 %-ный раствор крахмала, 0,01 н раствор тиосульфата натрия, конические колбы, мерные пипетки на 20 мл, бюретки, штативы.
Основные положения. При действии раствора йода на связанный и свободный сероводород и соли сернистой и тиосерной кислот происходит окисление последних:
S2-+I2 → 2I-+S
HS-+I2→H+ + 2I- + S
SОз2- + I2 → SO42 -+ 2I-+ 2Н+
2S2Оз2-+ I2 →2I+ S4О62-
Ход определения. Вследствие летучести свободного сероводорода производят два определения: ориентировочное и точное.
Ориентировочное определение. В коническую колбу помещают 20 мл фильтрата атмосферных осадков, добавляют 0,2 г иодида калия и перемешивают круговыми движениями, при этом кристаллы растворяются. Затем прибавляют 2-3 капли 0,5 %-ного раствора крахмала и титруют 0,01 н раствором йода до появления голубой окраски, не исчезающей при энергичном встряхивании.
Точное определение. В коническую колбу вносят 20 мл исследуемой пробы, 0,2 г иодида калия ,отмеряют из бюретки 0,01 н раствора йода на 1 мл больше, чем было израсходовано на ориентировочное титрование, затем прибавляют 2-3 капли 0,5 %-ного раствора крахмала ,тщательно взбалтывают и оттитровывают избыток йода 0,01 н раствором тиосульфата натрия.
Общее содержание соединений серы X (в мг/л), окисляемых йодом, выраженное в форме сероводорода, вычисляют по формуле (2.2)
, (2.2)
где V1 – объем прибавленного раствора йода, мл;
H1-нормальность раствора йода, н;
V2-объем раствора тиосульфата натрия, израсходованный на титрование избытка раствора йода, мл;
H2-нормальность раствора тиосульфата натрия, н;
17-эквивалентный вес
1000-коэффициент перевода мл
V- объем исследуемой пробы, мл.
2.1.6 Методика определения содержания карбонат- и гидрокарбонат-ионов в атмосферных осадках
Реактивы и оборудование. Бюретка для титрования; колбы конические на 250 мл; пипетки 10 мл; раствор фенолфталеина; раствор метилового оранжевого; 0,05 н раствор соляной кислоты.
Ход определения. Определение карбонат-иона.
В колбу наливают 10 мл анализируемой воды. Добавляют пипеткой 5-6 капель раствора фенолфталеина (при отсутствии окрашивания раствора, либо при слаборозовом окрашивании считают что карбонат-ион в пробе отсутствует, рН пробы меньше 8,0-8,2). Постипенно титруют содержимое склянки раствором соляной кислоты (0,05н) до тех пор, пока окраска побледнеет до слаборозовой. Массовую концентрацию карбонат-иона рассчитывают по формуле (2.3):
Ск = Vк ∙300,
где Vк - объем раствора соляной кислоты, израсходованный на титрование, мг/л.
Определение гидрокарбонат-иона. В колбу наливают 10 мл анализируемой воды. Добавляют пипеткой 1-2 капели раствора метилового оранжевого. Постипенно титруют содержимое склянки раствором соляной кислоты (0,05 н) при перемешивании до перехода желтой окраски в розовую. Массовую концентрацию гидрокарбонат-иона рассчитывают по формуле (2.4):
Ск = Vгк ∙305,
где Vгк - объем раствора соляной кислоты, израсходованный на титрование, мг/л.
2.1.7
Методика определения
Реактивы и оборудование. Раствор трилона Б с молярной концентрацией эквивалента 0,05 моль/л, индикатор хромоген черный, раствор гидроксида натрия с молярной концентрацией 2 моль/л, аммонийный буферный раствор, индикатор мурексид.
Общие положения. В этой работе используется комплексонометрический метод определения Са2+ и Mg2+ при их совместном присутствии в растворе.
Сущность определения сводится к тому, что в начале определяют суммарное содержание молярной концентрацией эквивалента 0,05 моль/л Mg2+, титруя фильтрат раствором трилона Б в присутствии хромогена черного. Затем находят содержание ионов Са2+, титруя фильтрат раствором трилона Б в присутствии индикатора мурексида. По разности этих двух определений находят содержание ионов Mg2+.
Ход работы. Пипеткой на 50 мл отбирают фильтрат и переносят его в колбу для титрования, приливают 5 мл аммонийной буферной смеси, 25-30 мг хромогена черного и титруют раствором трилона Б с молярной концентрацией эквивалента 0,05 моль/л до перехода винно- красной окраски раствора в синюю.
Титрование повторяют 2-3 раза и берут среднее значение.
Содержание Са2+ и Mg2+ вместе взятых можно найти по формуле (2.5):
m(Ca2++Mg2+) = , (2.5)
где С(1/zNа2[НзТг])- концентрация раствора трилона Б, н;
V(Na2[НзТг])- объем рабочего раствора трилона Б, затраченного на титрование, мл;
Уф- объем фильтрата, мл.
Определение содержания кальция. 50 мл фильтрата переносят в колбу для титрования, приливают 2,5 мл раствора NaOH с молярной концентрацией 2 моль/л, 30-40 мг смеси мурексида с хлоридом натрия и приступают к титрованию раствором трилона Б с молярной концентрацией эквивалента 0,05 моль/л до появления сине-фиолетовой окраски, не исчезающей в течении 2-3 минут. Титрование повторяют 2-3 раза и берут среднее значение. Содержание кальция вычисляют по формуле, как и суммарное содержание Са2+ и Mg2+.
Количество магния находят по формуле (2.6)
m(Mg2+) = m(Ca2++Mg2+) - m(Ca2+),
2.1.8 Методика определения содержания сульфат-ионов в атмосферных осадках
Реактивы и оборудование. 10 %-ный раствор хлорида бария; раствор электролита (NaCl+HCI), раствор сульфата натрия, мерные колбы на 50 мл, 100 мл, ФЭК, кюветы.
Общие положения. В работе используют реакцию образования дисперсной системы малорастворимого в кислых растворах сульфата бария (ПР=1,1 ∙10 -10)
Ва2+ + SO42- =BaSO4
Для обеспечения избирательности определения сульфатов относительно карбонатов, фосфатов, хроматов реакцию проводят в кислой среде.
Ход определения. Приготовление рабочего раствора сульфата натрия. Раствор сульфата натрия с концентрацией 0,2 мг/ мл готовится растворением 0,8872 г прокаленного х.ч. сульфата натрия в 100 мл дважды перегнанной дистиллированной воды. Рабочий раствор сульфата натрия, содержащий 10 мкг в 1000 мл, готовят разбавлением полученного раствора в 20 раз.
Приготовление раствора электролита. 240 г химически чистого (х.ч.) хлорида натрия помещают в мерную колбу на 1000 мл, добавляют небольшое количество бидистиллята, приливают 20,5 мл концентрированной соляной кислоты и доводят бидистиллятом до метки.
Приготовление растворов для построения калибровочного графика. В мерные колбы вместимостью 50 мл вносят 1,2,4,6,10 мл рабочего раствора сульфата натрия, что соответствует 20,40,80,120,200 мкг сульфата натрия.
В каждую колбу приливают 10 мл электролита и соответственно 19,18,16,14,10 мл дважды перегнанной дистиллированной воды, перемешивают круговыми вращениями колбы. Затем приливают 7,5 мл раствора хлорида бария, перемешивают, доводят объем раствора до метки и снова тщательно перемешивают. Через 5 минут измеряют оптическую плотность стандартных растворов по отношению к раствору сравнения в порядке понижения концентрации в кюветах с толщиной поглощающего слоя 50 мл. Раствор сравнения готовят аналогично в колбе вместимостью 50 мл без сульфата натрия.
Снег перевести в жидкую фазу. Затем к 10 мл талой воды прибавляют 20 мл электролита, 20 мл бидистиллята, раствор перемешивают и добавляют 75 мл раствор хлорида бария. В колбе на 100 мл раствор доводят до метки и колориметрируют.
2.1.9 Определение содержания ионов аммония в атмосферных осадках
Реактивы и оборудование. ФЭК; электроплитка; мерные колбы на 50 мл, 100 мл; пипетки на 1 мл, 10 мл с делениями, на 10 мл без делений; раствор сегнетовой соли KNaC4H4O6 ∙ 4Н2О - растворяют 50 г соли при нагревании в дистиллированной воде, доводят раствор до 100 мл, перемешивают, фильтруют, добавляют 5 мл 10 %-ного раствора NaOH и кипятят 30 мин (для удаления следов NH3).
Объем раствора вновь доводят до 100 мл; реактив Несслера (щелочной раствор тетраиодмеркурата калия KНgI4 торговый препарат); безаммиачная вода - дистиллированную воду с добавкой щелочи (25 мл 5 %-ного раствора NaOH на 1 л воды) кипятят 1 час; стандартный раствор NH4CI. Основной раствор: растворяют в безаммиачной воде 296,5 мг безводного NH4CI, высушенного при 100 °С, и разбавляют такой же водой до 100 мл; 1 мл полученного раствора содержит 100 мкг NH4. Рабочий раствор: разбавляют безаммиачной дистиллированной водой 5 мл основного стандартного раствора до 100 мл; 1 мл полученного раствора содержит 5 мкг NH4.
Общие положения. Ионы аммония определяют фотометрически по реакции с реактивом Несслера. Принцип метода основан на том, что аммоний с реактивом Несслера образует йодид меркураммония, который окрашивает раствор в желто-коричневый цвет. Интенсивность окраски пропорциональна содержанию аммония в воде.
NH4+ + 2К2НgI4 + 2КОН → NH2Нg2I3↓ + 5KI + 2H2O + K+
Так как соли кальция и магния, обычно содержащиеся в природных водах, при взаимодействии с реактивом Несслера могут выпасть в осадок, их связывают раствором виннокислого натрия-калия (сегнетовой солью). Диапазон определяемых концентраций аммония - 0,05-4 мг/л.
Как правило, в чистых природных водах содержится 0,01-0,1 мг/л аммонийных солей. Предельно допустимые концентрации аммиака в воде водоемов 2 мг/л (по азоту).
Ход работы. К100 мл пробы воды добавляют 0,2 мл раствора сегнетовой соли и 0,2 мл реактива Несслера, перемешивают и через 10 мин измеряют оптическую плотность раствора при 425 нм в кювете толщиной 1 см на фоне дистиллированной воды. Из полученного значения оптической плотности вычитают оптическую плотность холостой пробы. Концентрацию ионов аммония в пробе определяют по калибровочному графику.
Построение калибровочного графика
В мерные колбы на 50 мл наливают 0,1,2,3,4,6 и 10 мл стандартного раствора NH4CI концентрации 5 мкг NH4 в 1 мл. Разбавляют до метки безаммиачной водой, перемешивают, отбирают из каждой колбы по 10 мл и переносят в пробирки. Концентрация ионов аммония в растворах составляет 0; 0,1; 0,2; 0,3; 0,6 и 1 мг/л. Определение ионов аммония ведут по методике, описанной выше. Из полученных значений оптических плотностей вычитают оптическую плотность холостого раствора.