Автор работы: Пользователь скрыл имя, 06 Ноября 2012 в 13:58, реферат
С ростом населения Земли стало ясно, что обеспечение его продуктами питания немыслимо без перехода к интенсивному сельскохозяйственному производству, предполагающему широкое использование не только удобрений, но и средств защиты растений от различных болезней и вредителей, а также сорняков. В этом плане большие надежды возлагались на искусственные химические препараты, получившие название пестицидов.
Введение
С ростом населения Земли стало ясно, что обеспечение его продуктами питания немыслимо без перехода к интенсивному сельскохозяйственному производству, предполагающему широкое использование не только удобрений, но и средств защиты растений от различных болезней и вредителей, а также сорняков. В этом плане большие надежды возлагались на искусственные химические препараты, получившие название пестицидов. Пестициды (pestis- зараза, caedo – убивать) – общепринятое собирательное название химических средств защиты растений. Они используются для борьбы с сорняками (гербициды и дефолианты), вредителями (инсектициды), грибковыми заболеваниями (фунгициды) и другими болезнями сельскохозяйственных растений, кустарников и деревьев.
Их использование наиболее интенсивными темпами началось в 1940-х гг. По данным статистики, в 1970 г. в мире было синтезировано около 0,5 млн. т пестицидов, а в 1980 г. их производство только в четырех странах (США, ФРГ, Япония и Италия) превысило 1,7 млн. т.
Особо эффективными средствами борьбы с насекомыми-вредителями оказались хлорорганические соединения алифатического и ароматического рядов. Некоторые из них были известны уже довольно давно, однако пестицидные свойства их были выявлены лишь в 1930-1940-х годах. Например, гексахлорциклогексан (ГХЦГ) был синтезирован Фарадеем ещё в 1825 г., но его промышленное производство было начато в Японии только в 1949 г. после установления инсектицидной активности одного из его изомеров- линдана. Другой известный инсектицид, ДДТ, был впервые синтезирован в 1874 г. немецким химиком Цейдлером, но только перед началом Второй мировой войны Мюллер обнаружил у ДДТ эти свойства ( в 1948 г. ученый был удостоен за свое открытие Нобелевской премии по медицине). К середине 1980-х в мире было произведено около 3,5 млн. т ДДТ.
В большинстве стран применение ДДТ сейчас запрещено законом и содержание этого вещества в биосфере начало снижаться (период полупревращения ДДТ в окружающей среде около 20 лет), ДДТ встречается всюду: в материнском молоке, в жире байкальских тюленей и у пингвинов Антарктиды.
В сельском хозяйстве России применяется более 146 ядохимикатов, относящихся к различным классам химических соединений: мышьякосодержащие препараты (арсенит натрия, парижская зелень и др.); хлорорганические (ДДТ, гексахлоран, алдрин, хлордан, полихлорпинен, полихлоркамфен, ДДД, ГДЕ, DFDF и др.), фосфорорганические (метилмеркаптофос, хлорофос, фосфамид, карбафос, тиофос, метафос, метилнитрофос, трихлорметафос-3 и др.); сероорганические (каптан, тетраметилтиурамдисульфит и др.); ртутноорганические (гранозан, меркузан и др.); производные карбаминовой кислоты (севин, авадекс); производные производные феноксиуксусной кислоты, нитрофенола (ДНОК, нитрофенол); соли тяжелых металлов (барий хлористый, медь сернокислая и др.); алкалоиды (никотин сернокислый, анабазин сернокислый и др.).
В результате циркуляции пестицидов в окружающей среде они присутствуют в атмосфере, почве, растениях и воде. Благодаря персистентности и кумулятивным свойствам ряда пестицидов (ДДТ, ГХЦГ, гептахлор, алдрин, дилдрин и др.) они могут накапливаться в объектах внешней среды в значительных количествах. Так, хлориндан и ДДТ обнаруживаются в почве через 12-15 лет после однократного внесения. Период полураспада ДДТ в почве составляет 7 лет. Алдрин и дилдрин, примененные в дозе 11,2 кг/га, сохраняют свою токсичность 8 лет, гептахлор-6 лет и при более низких дозах (2,5-6 кг/га)-4 года. Гексахлоран также довольно стоек и разрушается в почве 3-4 года. От нескольких месяцев до двух лет сохраняются в почве севин, линдан. Тиофос обнаруживается в почве спустя шесть месяцев, токсафен- в течение года.
Молекулы синтезированных ядов под влиянием внешних условий могут изменяться и образовывать метаболиты, в результате чего даже сравнительно малотоксичные яды могут превращаться в сильнотоксичные соединения. Например, хлорофос в щелочной среде превращается в высокотоксичный диметилдихлорвинилфосфат (ДДВФ). Алдрин превращается в дилрдрин. Через несколько лет после обработки алдрином почва содержит его метаболит- дилдрин, причем в 6-12 раз больше, чем было внесено первоначально алдрина. Кроме того, дилдрин медленнее разлагается, чем алдрин. Так же гептахлор превращается в эпоксид. Известны и метаболиты ДДТ.
Важнейшей составной частью внешней среды являются водоёмы. В них используется вода, идущая на производственные и бытовые нужды населения. Продукция водоемов используется пищевой промышленностью во все возрастающих количествах. В этом плане следует рассмотреть и оценить возможные пути поступления пестицидов в водоёмы. Основным источником загрязнения водоёмов пестицидами является сток талых, дождевых и грунтовых вод с обработанных площадей. Пестициды могут попадать в водоёмы при сносе их воздушной волной во время обработки объектов, находящихся вблизи водоёмов, либо при внесении их в воду в качестве инсектицидов с целью уничтожения развития водных фаз кровососущих насекомых. В последние годы особенно усиленно используются способы воздействия на водную среду с целью избирательной элиминации определенных гидробионтов. Для этого применяют альгициды, гербициды, ихтиоциды, моллюскоциды, бактерициды и др.
В результате циркуляции пестицидов
в водоеме они могут
В литературе имеются сведения, что ДДТ обнаруживается в мясе форели в количестве 0,14-3,4 мг/кг при содержании его в воде 0,012-0,02 мг/л, а при содержании в воде 0,02 мг/л в теле рыб накапливалось до 3-4 мг/кг препарата. При обработке Черного озера (США) против комаров содержание ДДТ в воде составляло не более 0,02 мг/л, тогда как в рыбе обнаруживалось 2500 мг/кг, в планктонных организмах-5,3, в водоплавающей птице—1465-2134 мг/кг. При содержании ДДТ в воде дренажных систем 0,03 мг/л в рыбе обнаруживался препарат и его метаболит в количестве 12,7 мг/кг; в водных растениях—до 2,3 мг/кг. Такая же закономерность по кумуляции наблюдается и при применении других стойких препаратов. При содержании эндрина в воде в концентрации 0,04 мг/л отмечается сравнительно быстрое его накопление в рыбе (до 1 мг/кг), в водных растениях (до 0,55 мг/кг), иле (до 80 мг/кг). Подобным образом накапливается аналог ДДТ-ДДД. При обследовании рыб в одном водоёме Калифорнии, вода которого содержала 0,02 мг/кг ДДД, было найдено в планктоне до 5 мг/кг препарата, а в тканях различных рыб- от 100 мг/кг до нескольких тысяч.
При характеристике степени кумуляции пестицида при переходе из одной среды в другую представляется целесообразным определить коэффициент накопления как отношение концентрации пестицида в среде к концентрации его в воде. Таким образом, в результате широкого применения стойких и способных кумулироваться пестицидов ими загрязняются водоёмы (ил, флора, фауна). При переходе пестицидов из воды в другие звенья биологической цепи увеличивается их содержание в сотни и даже тысячи раз. Рыба из таких водоемов представляет потенциальную опасность для человека при употреблении ее в пищу. Исключительная опасность пестицидов для пресных вод определяется тем, что они токсичны для гидробионтов при малых концентрациях, особенно при хронических воздействиях; склонны накапливаться водными животными; передаются по трофическим цепям; обладают особой избирательной активностью по отношению к воспроизводительной системе водных животных.
Хроническое воздействие малых концентраций различных пестицидов на водных животных имеет в целом довольно однозначные последствия: патоморфологические и патофизиологические нарушения в крови, глубокие нарушения функций и гистологических структур печени, задержки и деформации в процессе эмбрионального и постэмбрионального развития, появление уродств в потомстве, замедление и диспропорция роста, подрыв воспроизводительной функции и т.п.
Мировая статистика заморов указывает на то, что случаи массовой гибели рыб за последние 10-15 лет в значительной мере связаны с воздействием пестицидов, однако их роль часто маскируется другими факторами; иногда они действуют на рыб совместно, например, дефицит кислорода, как правило, резко усиливает токсическое действие пестицидов; аналогично действует высокая температура и другие природные факторы.
Наиболее токсичны для водной фауны хлорорганические соединения, особенно эндрин, дилдрин, алдрин, ДДТ, гептахлор, хлордан, метоксихлор, линдан, ГХЦГ. Они оказывают тормозящее и дегенерирующее влияние на эмбриональное развитие рыб и беспозвоночных, ухудшают качество потомства и снижают выживаемость молоди, подавляют воспроизводительные функции.
В сельском хозяйстве в значительных количествах применяют сложные эфиры фосфорных, особенно фосфорной, тио- и дитиофосфорных кислот. Все эти соединения называются фосфорорганическими (ФОС). Они менее токсичны для рыб. Исследование токсичности многих фосфорорганических соединений позволило установить некоторые закономерности, касающиеся зависимости токсичности этих веществ от химического строения. Было установлено, что токсичность препаратов уменьшается при замене в радикалах этильных групп метильными, однако инсектицидная и акарицидная активность веществ почти не понижается. Поэтому для рыб безопасно применение таких веществ, как метилпаратион, хлортион, диптерекс, резистокс.
Большинство гербицидов малотоксичны для рыб, однако динитрофеноловые соединения, хлорированные бензолы токсичны для рыб.
Токсичность хлор- и фосфорорганических соединений во многих случаях превосходит токсичность наиболее ядовитых соединений неорганической природы, что видно из таблицы 1. Следует также отметить, что гидробионты, в первую очередь рыбы, менее устойчивы к пестицидам, чем млекопитающие. Устойчивость рыб к некоторым инсектицидам падает с возрастом.
Токсическое влияние пестицидов на рыб проявляется как в прямом токсическом действии, так и в косвенном—в изменении экологических условий водоёма (снижение содержания растворенного в воде кислорода ниже пороговых величин, постепенное загрязнение водоёма вследствие отмирания высших водных растений и нитчатых водорослей, появление нитритов, избыточной углекислоты сероводорода).
Изменение сапрофитной микрофлоры и зоопланктона также указывает на изменения в биотической среде обитания рыб.
В таблице 1 приведена токсичность для рыб наиболее широко применяемых инсектицидов
(CL50) через 48 часов.
Препарат |
Токсичность (мг/л) | ||
Для форели |
Для щуки |
Для зеркального карпа | |
Эндрин Эндосульфан Дильдрин Карбофос Токсафен ДДТ Линдан Альдрин Диазинон Хлортион Гептахлор Хлориндан Хлорофос Тиофос Меркаптофос Метилмеркаптофос |
0,008 0,01 0,04 0,1 0,2 0,2 0,3 0,2 0,5 0,5 0,6 1,0 1,0 3,0 4,0 7,5 |
0,001 0,005 0,05 1,0 0,1 0,05 0,2 0,2 2,0 0,4 0,4 0,05 1,0 3,0 4,0 4,0 |
0,004 0,011 0,067 29,4 0,056 0,057 0,28 0,165 5,2 4,1 0,38 1,16 более 100,0 3,5 15,2 более 100,0 |
ДДТ (дихлодифенилтрихлорэтан) применялся в борьбе с плодожоркой и листогрызущими вредителями в саду. Инсектицид как контактного, так и внутрисистемного действия. Использовался также в качестве ларвицида на водоёмах.
ДДТ практически нерастворим в воде, поэтому применяется в виде дустов и на масляной основе (соляровое масло). Обладает персистентностью и кумулятивными свойствами. Длительное время сохраняется в почве и объектах водоёма. В организме рыб кумулируется в основном в висцеральном жире, пилорических придатках и половых продуктах. В жабрах и мышцах содержится в меньших количествах. Действует на рыб, как нервный яд. Симптомы отравления выражаются в беспокойстве, нарушении равновесия и кругообразном плавании. Затем возникают сильные судороги и параличи, приводящие к гибели. Обратимость отравления незначительная.
Концентрация ДДТ 1 мг/л летально действует на всех прудовых рыб через 1-2 дня. При обработке прудов ДДТ в концентрации 0,25 мг/л через несколько дней погибает половина рыб. В лабораторных опытах с золотыми рыбками при 20º ДДТ вызывал гибель рыб в концентрации 0,1 мг/л, радужная форель погибала при концентрации 0,2, щука—при 0,05, а зеркальный карп- при 0,057 мг/л.
Установлено, что концентрация ДДТ выше 0,07 мг/л убивает всех подопытных рыб через 3 дня, а 0,03 мг/л не вызывает гибели рыб.
При концентрации ДДТ свыше 0,125 мг/л через 3 дня погибает 100% гамбузии и при 0,0125-0,006 мг/л—лишь часть рыб. Концентрация 0,5 мг/л при 96-ти часовой экспозиции убивает всех подопытных рыб через 7 дней; 0,25 мг/л в течение 5 дней не вызывает гибели рыб. Концентрация 0,14 мг/л убивает рыб рода Lepomis.
От 5%-ного дуста ДДТ в течение 10-14 дней при 11,5-12º и концентрации 1,25 и 0,95 мг/л гибнет 100% рыб; от 0,5 мг/л-75% (чувствительные рыбы—форель,окунь и др.); от 0,25 мг/л-35,2%; от 0,125 мг/л-20%; от 0,05 мг/л-18%.
Инсектицид сохраняется в