Лекции по "Информатике"

Автор работы: Пользователь скрыл имя, 31 Октября 2013 в 18:25, курс лекций

Описание работы

Лекция 1. Введение в информатику
1.1. Что такое инфоpматика?
Термин "информатика" (франц. informatique) происходит от французских слов information (информация) и automatique (автоматика) и дословно означает "информационная автоматика".
Широко распространён также англоязычный вариант этого термина — "Сomputer science", что означает буквально "компьютерная наука".
Инфоpматика — это основанная на использовании компьютерной техники дисциплина, изучающая структуру и общие свойства информации, а также закономерности и методы её создания, хранения, поиска, преобразования, передачи и применения в различных сферах человеческой деятельности.

Файлы: 9 файлов

Lekciya 1.doc

— 117.00 Кб (Просмотреть файл, Скачать файл)

Lekciya 2.doc

— 338.00 Кб (Просмотреть файл, Скачать файл)

Lekciya 3.doc

— 143.50 Кб (Просмотреть файл, Скачать файл)

Lekciya 4.doc

— 215.00 Кб (Просмотреть файл, Скачать файл)

Lekciya 5.doc

— 417.00 Кб (Просмотреть файл, Скачать файл)

Lekciya 6.doc

— 176.00 Кб (Просмотреть файл, Скачать файл)

Lekciya 7.doc

— 318.00 Кб (Просмотреть файл, Скачать файл)

Lekciya 8.doc

— 106.50 Кб (Скачать файл)

Лекция 8. Технология подготовки и решения задач с помощью компьютера 

8.1. Какие этапы  включает в себя решение задач  с помощью компьютера?

Решение задач с помощью  компьютера включает в себя следующие  основные этапы, часть из которых  осуществляется без участия компьютера.

  1. Постановка задачи:
    • сбоp инфоpмации о задаче;
    • фоpмулиpовка условия задачи;
    • опpеделение конечных целей pешения задачи;
    • определение формы выдачи результатов;
    • описание данных (их типов, диапазонов величин, структуры и т.п. ).
  2. Анализ и исследование задачи, модели:
    • анализ существующих аналогов;
    • анализ технических и программных средств;
    • pазpаботка математической модели;
    • разработка структур данных.
  3. Разработка алгоритма:
    • выбор метода проектирования алгоритма;
    • выбор формы записи алгоритма (блок-схемы, псевдокод и др.);
    • выбоp тестов и метода тестиpования;
    • проектирование алгоритма.
  4. Пpогpаммиpование:
    • выбор языка программирования;
    • уточнение способов организации данных;
    • запись алгоpитма на выбpанном языке пpогpаммиpования.
  5. Тестиpование и отладка:
    • синтаксическая отладка;
    • отладка семантики и логической стpуктуpы;
    • тестовые pасчеты и анализ pезультатов тестиpования;
    • совершенствование пpогpаммы.
  6. Анализ результатов решения задачи и уточнение в случае необходимости математической модели с повторным выполнением этапов 2 - 5.
  7. Сопровождение программы:
    • доработка программы для решения конкретных задач;
    • составление документации к pешенной задаче, к математической модели, к алгоpитму, к пpогpамме, к набору тестов, к использованию.

8.2. Что называют  математической моделью?

Математическая модель — это система математических соотношений — формул, уравнений, неравенств и т.д., отражающих существенные свойства объекта или явления.


Всякое явление природы  бесконечно в своей сложности. Проиллюстрируем это с помощью примера, взятого из книги В.Н. Тростникова "Человек и информация" (Издательство "Наука", 1970).

... Обыватель формулирует математику  задачу следующим образом: "Сколько времени будет падать камень с высоты 200 метров?" Математик начнет создавать свой вариант задачи приблизительно так: "Будем считать, что камень падает в пустоте и что ускорение силы тяжести 9,8 метра в секунду за секунду. Тогда ..."

— Позвольте, — может сказать "заказчик", — меня не устраивает такое упрощение. Я хочу знать точно, сколько времени будет падать камень в реальных условиях, а не в несуществующей пустоте.

— Хорошо, — согласится математик. — Будем считать, что камень имеет сферическую форму и диаметр... Какого примерно он диаметра?

— Около пяти сантиметров. Но он вовсе не сферический, а продолговатый.

— Тогда будем считать, что он имеет форму эллипсоида с полуосями четыре, три и три сантиметра и что он падает так, что большая полуось все время остается вертикальной. Давление воздуха примем равным 760 мм ртутного столба, отсюда найдем плотность воздуха...

Если тот, кто поставил задачу на "человеческом" языке не будет  дальше вмешиваться в ход мысли  математика, то последний через некоторое  время даст численный ответ. Но "потребитель" может возражать по-прежнему: камень на самом деле вовсе не эллипсоидальный, давление воздуха в том месте и в тот момент не было равно 760 мм ртутного столба и т.д. Что же ответит ему математик?

Он ответит, что точное решение реальной задачи вообще невозможно. Мало того, что форму камня, которая влияет на сопротивление воздуха, невозможно описать никаким математическим уравнением; его вращение в полете также неподвластно математике из-за своей сложности. Далее, воздух не является однородным, так как в результате действия случайных факторов в нем возникают флуктуации колебания плотности. Если пойти ещё глубже, нужно учесть, что по закону всемирного тяготения каждое тело действует на каждое другое тело. Отсюда следует, что даже маятник настенных часов изменяет своим движением траекторию камня.

Короче говоря, если мы всерьез захотим точно исследовать поведение какого-либо предмета, то нам предварительно придется узнать местонахождение и скорость всех остальных предметов Вселенной. А это, разумеется. невозможно.

Чтобы описать явление, необходимо выявить самые существенные его свойства, закономерности, внутренние связи, роль отдельных характеристик  явления. Выделив наиболее важные факторы, можно пренебречь менее существенными.


Наиболее эффективно математическую модель можно реализовать на компьютере в виде алгоритмической модели — так называемого "вычислительного эксперимента" (см. [1], параграф 26).

Конечно, результаты вычислительного  эксперимента могут оказаться и  не соответствующими действительности, если в модели не будут учтены какие-то важные стороны действительности.

Итак, создавая математическую модель для решения задачи, нужно:

  1. выделить предположения, на которых будет основываться математическая модель;
  2. определить, что считать исходными данными и результатами;
  3. записать математические соотношения, связывающие результаты с исходными данными.

При построении математических моделей далеко не всегда удается  найти формулы, явно выражающие искомые  величины через данные. В таких случаях используются математические методы, позволяющие дать ответы той или иной степени точности.

Существует не только математическое моделирование какого-либо явления, но и визуально-натурное моделирование, которое обеспечивается за счет отображения этих явлений средствами машинной графики, т.е. перед исследователем демонстрируется своеобразный "компьютерный мультфильм", снимаемый в реальном масштабе времени. Наглядность здесь очень высока.

8.3. Какие основные  этапы содержит процесс разработки  программ?

Процесс разработки программы  можно выразить следующей формулой:  
 

 

Наличие ошибок в только что разработанной программе  это вполне нормальное закономерное явление. Практически невозможно составить реальную (достаточно сложную) программу без ошибок.

Нельзя делать вывод, что программа правильна, лишь на том основании, что она не отвергнута машиной и выдала результаты.


Ведь все, что достигнуто в данном случае, это получение  каких-то результатов, не обязательно  правильных. В программе при этом может оставаться большое количество логических ошибок.

8.4. Как проконтролировать  текст программы до выхода  на компьютер?

Текст программы можно  проконтролировать за столом с помощью  просмотра, проверки и прокрутки.

  • Просмотр. Текст программы просматривается на предмет обнаружения описок и расхождений с алгоритмом. Нужно просмотреть организацию всех циклов, чтобы убедиться в правильности операторов, задающих кратности циклов. Полезно посмотреть еще раз условия в условных операторах,аргументы в обращениях к подпрограммам и т.п.
  • Проверка. При проверке программы программист по тексту программы мысленно старается восстановить тот вычислительный процесс, который определяет программа, после чего сверяет его с требуемым процессом. На время проверки нужно "забыть", что должна делать программа , и "узнавать" об этом по ходу её проверки. Только после окончания проверки программы можно "вспомнить" о том, что она должна делать и сравнить реальные действия программы с требуемыми.
  • Прокрутка. Основой прокрутки является имитация программистом за столом выполнения программы на машине. Для выполнения прокрутки приходится задаваться какими-то исходными данными и производить над ними необходимые вычисления. Прокрутка — трудоемкий процесс, поэтому ее следует применять лишь для контроля логически сложных участков программ. Исходные данные должны выбираться такими, чтобы в прокрутку вовлекалось большинство ветвей программы.

8.5. Для чего  нужны отладка и тестирование?

Отладка программы —  это процесс поиска и устранения ошибок в программе, производимый по результатам её прогона на компьютере.


Тестирование — это  испытание, проверка правильности работы программы в целом, либо её составных  частей.


Отладка и тестирование (англ. test — испытание) — это два четко различимых и непохожих друг на друга этапа:

  • при отладке происходит локализация и устранение синтаксических ошибок и явных ошибок кодирования;
  • в процессе же тестирования проверяется работоспособность программы, не содержащей явных ошибок.

Тестирование устанавливает  факт наличия ошибок, а отладка выясняет ее причину.


Английский термин debugging ("отладка") буквально означает "вылавливание жучков". Термин появился в 1945 г., когда один из первых компьютеров — "Марк-1" прекратил работу из-за того, что в его электрические цепи попал мотылек и заблокировал своими останками одно из тысяч реле машины.

8.6. В чем  заключается отладка?

В современных программных  системах (Turbo Basic, Turbo Pascal, Turbo C и др.) отладка осуществляется часто с  использованием специальных программных  средств, называемых отладчиками. Эти средства позволяют исследовать внутреннее поведение программы.

Программа-отладчик обычно обеспечивает следующие возможности:

  • пошаговое исполнение программы с остановкой после каждой команды (оператора);
  • просмотр текущего значения любой переменной или нахождение значения любого выражения, в том числе, с использованием стандартных функций; при необходимости можно установить новое значение переменной;
  • установку в программе "контрольных точек", т.е. точек, в которых программа временно прекращает свое выполнение, так что можно оценить промежуточные результаты, и др.

При отладке программ важно помнить следующее:

  • в начале процесса отладки надо использовать простые тестовые данные;
  • возникающие затруднения следует четко разделять и устранять строго поочередно;
  • не нужно считать причиной ошибок машину, так как современные машины и трансляторы обладают чрезвычайно высокой надежностью.

8.7. Что такое  тест и тестирование?

 

Как бы ни была тщательно  отлажена программа, решающим этапом, устанавливающим ее пригодность для работы, является контроль программы по результатам ее выполнения на системе тестов.

Программу условно можно  считать правильной, если её запуск для выбранной системы тестовых исходных данных во всех случаях дает правильные результаты.


Но, как справедливо  указывал известный теоретик программирования Э. Дейкстра, тестирование может показать лишь наличие ошибок, но не их отсутствие. Нередки случаи, когда новые входные данные вызывают "отказ" или получение неверных результатов работы программы, которая считалась полностью отлаженной.

Для реализации метода тестов должны быть изготовлены или заранее  известны эталонные результаты.

Вычислять эталонные результаты нужно обязательно до, а не после получения машинных результатов.


В противном случае имеется опасность невольной подгонки вычисляемых значений под желаемые, полученные ранее на машине.

8.8. Какими  должны быть тестовые данные?

Тестовые данные должны обеспечить проверку всех возможных условий возникновения ошибок:

  • должна быть испытана каждая ветвь алгоритма;
  • очередной тестовый прогон должен контролировать нечто такое, что еще не было проверено на предыдущих прогонах;
  • первый тест должен быть максимально прост, чтобы проверить, работает ли программа вообще;
  • арифметические операции в тестах должны предельно упрощаться для уменьшения объема вычислений;
  • количества элементов последовательностей, точность для итерационных вычислений, количество проходов цикла в тестовых примерах должны задаваться из соображений сокращения объема вычислений;
  • минимизация вычислений не должна снижать надежности контроля;
  • тестирование должно быть целенаправленным и систематизированным, так как случайный выбор исходных данных привел бы к трудностям в определении ручным способом ожидаемых результатов; кроме того, при случайном выборе тестовых данных могут оказаться непроверенными многие ситуации;
  • усложнение тестовых данных должно происходить постепенно.

Пример. Система тестов для задачи нахождения корней квадратного уравнения ax2 + bx + c = 0 :  
 

Номер теста

Проверяемый случай

Коэффициенты

Результаты

a

b

c

1

d > 0

1

1

-2

x1 = 1,   x2 = -2

2

d = 0

1

2

1

Корни равны: x1 = -1,   x2 = -1

3

d < 0

2

1

2

Действительных корней нет

4

a = 0, b = 0, c = 0

0

0

0

Все коэффициенты равны  нулю. x — любое число

5

a = 0, b = 0, c № 0

0

0

2

Неправильное уравнение

6

a = 0, b № 0

0

2

1

Линейное уравнение; один корень: x = -0.5

7

a № 0, b № 0, c = 0

2

1

0

x1 = 0,   x2 = -0.5

Lekciya 9.doc

— 122.50 Кб (Просмотреть файл, Скачать файл)

Информация о работе Лекции по "Информатике"