Машинное обучение

Автор работы: Пользователь скрыл имя, 17 Декабря 2014 в 17:38, реферат

Описание работы

На данный момент существует целый ряд методов машинного обучения на заранее размеченных данных, используемых специалистами в различных областях. Их применяют везде, где возможно применение логики. Они требуют достаточно большого количества таких данных для получения высоких результатов. При этом, на практике, объем неразмеченных данных значительно превышает объем размеченных данных. Например, объемы изображений рукописного текста значительно превышают объемы размеченных изображений символов

Содержание работы

ВВЕДЕНИЕ
1. МАШИННОЕ ОБУЧЕНИЕ 4
2. ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ ОБУЧЕНИЯ ПО ПРЕЦЕДЕНТАМ 6
3. ТИПОЛОГИЯ ЗАДАЧ ОБУЧЕНИЯ ПО ПРЕЦЕДЕНТАМ 8
4. ПРИЛОЖЕНИЯ 13
5. МЕТОДЫ МАШИННОГО ОБУЧЕНИЯ 15
ЗАКЛЮЧЕНИЕ 26
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Файлы: 1 файл

РЕФЕРАТ.docx

— 115.96 Кб (Скачать файл)

СОДЕРЖАНИЕ

 

ВВЕДЕНИЕ

1.     МАШИННОЕ ОБУЧЕНИЕ                                                                           4

2.      ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ ОБУЧЕНИЯ ПО ПРЕЦЕДЕНТАМ 6

3.      ТИПОЛОГИЯ ЗАДАЧ ОБУЧЕНИЯ ПО ПРЕЦЕДЕНТАМ                       8

4.      ПРИЛОЖЕНИЯ                                                                                              13

5.      МЕТОДЫ МАШИННОГО ОБУЧЕНИЯ                                                     15

ЗАКЛЮЧЕНИЕ                                                                                                      26

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ                                             27

 

 

 

 

 

 

 

 

 

ВВИДЕНИЕ

На данный момент существует целый ряд методов машинного обучения на заранее размеченных данных, используемых специалистами в различных областях. Их применяют везде, где возможно применение логики. Они требуют достаточно большого количества таких данных для получения высоких результатов. При этом, на практике, объем неразмеченных данных значительно превышает объем размеченных данных. Например, объемы изображений рукописного текста значительно превышают объемы размеченных изображений символов. В представленной работе показан ряд новых методов с частичным привлечением учителя, для распознавания таких символов. Рассмотрено использование ограниченной машины Больцмана и сверточных нейронных сетей, которые эффективно работают для распознавания рукописных символов. Представленные алгоритмы превосходят классический алгоритм предобучения два хорошо известных алгоритма обучения с учителем.

Существует множество методов обучения для распознавания символов и рукописного текста [1]. Такие алгоритмы, как сверточные сети и нейронные сети, обученные на Ограниченной Машине Больцмана (RBM) достигают наиболее высокой эффективности. Они построены на использовании метода сопряженных градиентов [2]. Оба эти подхода достигают точности близкой к 99 % на MNIST (базы данных рукописных цифр). Однако, как методы обучения с учителем, они также требуют огромного количества размеченных данных для достижения высокой производительности в связи с их сложностью. Размеченные данные, хотя и чрезвычайно полезны, но не всегда могут быть легко получены. Метки как правило, должны быть назначены вручную, а это дорогостоящий и трудоемкий процесс. К сожалению, для рукописного распознавания текста помеченные данные трудно найти, но к счастью, существует большой резерв неразмеченных данных. Эта нехватка размеченных данных в сочетании с обилием неразмеченных приводит к поиску методов, которые используют оба вида этих данных.

Для этого необходимо пересмотреть вышеупомянутые методы обучения с учителем на предмет возможности их модификации для частичного привлечения учителя. Несмотря на то, что существует множество возможных методов с частичным привлечением учителя, они обычно используют априорно размеченные данные.

Было бы намного полезнее, если бы мы могли получить метки этих данных, которые при помощи алгоритма сами добивались высокой эффективности. При такой реализации возможно дообучать алгоритм в режиме реального времени по распознаваемым данным. Такой подход называется активным обучением.

 

 

 

 

 

 

 

 

 

 

 

1. МАШИННОЕ ОБУЧЕНИЕ.

Машинное обучение (Machine Learning) — обширный подраздел искусственного интеллекта, изучающий методы построения алгоритмов, способных обучаться. Различают два типа обучения. Обучение по прецедентам, или индуктивное обучение, основано на выявлении общих закономерностей по частным эмпирическим данным. Дедуктивное обучение предполагает формализацию знаний экспертов и их перенос в компьютер в виде базы знаний. Дедуктивное обучение принято относить к области экспертных систем, поэтому термины машинное обучение и обучение по прецедентам можно считать синонимами.

Машинное обучение находится на стыке математической статистики, методов оптимизации и классических математических дисциплин, но имеет также и собственную специфику, связанную с проблемами вычислительной эффективности и переобучения. Многие методы индуктивного обучения разрабатывались как альтернатива классическим статистическим подходам. Многие методы тесно связаны с извлечением информации и интеллектуальным анализом данных (Data Mining).

Наиболее теоретические разделы машинного обучения объединены в отдельное направление, теорию вычислительного обучения (Computational Learning Theory, COLT).

Машинное обучение — не только математическая, но и практическая, инженерная дисциплина. Чистая теория, как правило, не приводит сразу к методам и алгоритмам, применимым на практике. Чтобы заставить их хорошо работать, приходится изобретать дополнительные эвристики, компенсирующие несоответствие сделанных в теории предположений условиям реальных задач. Практически ни одно исследование в машинном обучении не обходится без эксперимента на модельных или реальных данных, подтверждающего практическую работоспособность метода.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ ОБУЧЕНИЯ  ПО ПРЕЦЕДЕНТАМ

Дано конечное множество прецедентов (объектов, ситуаций), по каждому из которых собраны (измерены) некоторые данные. Данные о прецеденте называют также его описанием. Совокупность всех имеющихся описаний прецедентов называется обучающей выборкой. Требуется по этим частным данным выявить общие зависимости, закономерности, взаимосвязи, присущие не только этой конкретной выборке, но вообще всем прецедентам, в том числе тем, которые ещё не наблюдались. Говорят также о восстановлении зависимостей по эмпирическим данным — этот термин был введён в работах Вапника и Червоненкиса.

Наиболее распространённым способом описания прецедентов является признаковое описание. Фиксируется совокупность n показателей, измеряемых у всех прецедентов. Если все n показателей числовые, то признаковые описания представляют собой числовые векторы размерности n. Возможны и более сложные случаи, когда прецеденты описываются временными рядами или сигналами, изображениями, видеорядами, текстами, попарными отношениями сходства или интенсивности взаимодействия, и т. д.

Для решения задачи обучения по прецедентам в первую очередь фиксируется модель восстанавливаемой зависимости. Затем вводится функционал качества, значение которого показывает, насколько хорошо модель описывает наблюдаемые данные. Алгоритм обучения (learning algorithm) ищет такой набор параметров модели, при котором функционал качества на заданной обучающей выборке принимает оптимальное значение. Процесс настройки (fitting) модели по выборке данных в большинстве случаев сводится к применению численных методов оптимизации.

В зарубежных публикациях термин algorithm употребляется только в указанном выше смысле, то есть это вычислительная процедура, которая по обучающей выборке производит настройку модели. Выходом алгоритма обучения является функция, аппроксимирующая неизвестную (восстанавливаемую) зависимость. В задачах классификации аппроксимирующую функцию принято называть классификатором (classifier), концептом (concept) или гипотезой (hypothesys); в задачах восстановления регрессии — функцией регрессии; иногда просто функцией. В русскоязычной литературе аппроксимирующую функцию также называют алгоритмом, подчёркивая, что и она должна допускать эффективную компьютерную реализацию.

 

 

 

 

 

 

 

 

 

 

 

 

 

3. ТИПОЛОГИЯ ЗАДАЧ ОБУЧЕНИЯ ПО ПРЕЦЕДЕНТАМ

         Обучение с учителем (Supervised learning) — один из разделов машинного обучения, посвященный решению следующей задачи. Имеется множество объектов (ситуаций) и множество возможных ответов (откликов, реакций). Существует некоторая зависимость между ответами и объектами, но она неизвестна. Известна только конечная совокупность прецедентов — пар «объект, ответ», называемая обучающей выборкой. На основе этих данных требуется восстановить зависимость, то есть построить алгоритм, способный для любого объекта выдать достаточно точный ответ. Для измерения точности ответов определённым образом вводится функционал качества.

           Классификация — один из разделов машинного обучения, посвященный решению следующей задачи. Имеется множество объектов (ситуаций), разделённых некоторым образом на классы. Задано конечное множество объектов, для которых известно, к каким классам они относятся. Это множество называется обучающей выборкой. Классовая принадлежность остальных объектов не известна. Требуется построить алгоритм, способный классифицировать произвольный объект из исходного множества.

           Регрессионный анализ — метод моделирования измеряемых данных и исследования их свойств. Данные состоят из пар значений зависимой переменной (переменной отклика) и независимой переменной (объясняющей переменной). Регрессионная модель есть функция независимой переменной и параметров с добавленной случайной переменной. Параметры модели настраиваются таким образом, что модель наилучшим образом приближает данные. Критерием качества приближения (целевой функцией) обычно является среднеквадратичная ошибка: сумма квадратов разности значений модели и зависимой переменной для всех значений независимой переменной в качестве аргумента. Регрессионный анализ — раздел математической статистики и машинного обучения. Предполагается, что зависимая переменная есть сумма значений некоторой модели и случайной величины. Относительно характера распределения этой величины делаются предположения, называемые гипотезой порождения данных. Для подтверждения или опровержения этой гипотезы выполняются статистические тесты, называемые анализом остатков. При этом предполагается, что независимая переменная не содержит ошибок. Регрессионный анализ используется для прогноза, анализа временных рядов, тестирования гипотез и выявления скрытых взаимосвязей в данных.

          Обуче́ние ранжи́рованию — это класс задач машинного обучения с учителем, заключающихся в автоматическом подборе ранжирующей модели по обучающей выборке, состоящей из множества списков и заданных частичных порядков на элементах внутри каждого списка. Частичный порядок обычно задаётся путём указания оценки для каждого элемента (например, «релевантен» или «не релевантен»; возможно использование и более, чем двух градаций). Цель ранжирующей модели — наилучшим образом (в некотором смысле) приблизить и обобщить способ ранжирования в обучающей выборке на новые данные.

         Прогноз — это процесс или результат предсказания тех или иных фактов, событий, явлений, величин, которые станут известны лишь в будущем по отношению к моменту времени, в котором создается прогноз. Под прогнозом также иногда понимают модель будущего события, явления и т. п.

         Прогнозирование — это процесс (часто основанный на научном исследовании) по расчету прогноза или разработке прогнозной модели.

В узком смысле под прогнозированием понимают предсказание будущих значений временного ряда на основе его значений в прошлом, и, возможно, дополнительной информации. Такую дополнительную информацию представляют влияющие на ситуацию внешние факторы.

          Обучение без учителя — один из разделов машинного обучения. Изучает широкий класс задач обработки данных, в которых известны только описания множества объектов (обучающей выборки), и требуется обнаружить внутренние взаимосвязи, зависимости, закономерности, существующие между объектами.

         Кластерный анализ — задача разбиения заданной выборки объектов (ситуаций) на непересекающиеся подмножества, называемые кластерами, так, чтобы каждый кластер состоял из схожих объектов, а объекты разных кластеров существенно отличались.

          Алгоритмы поиска ассоциативных правил предназначены для нахождения всех правил X Y, причем поддержка и достоверность этих правил должны быть выше некоторых наперед определенных порогов, называемых соответственно минимальной поддержкой и минимальной достоверностью.

      Фильтрации выбросов — обнаружение в обучающей выборке небольшого числа нетипичных объектов. В некоторых приложениях их поиск является самоцелью (например, обнаружение мошенничества). В других приложениях эти объекты являются следствием ошибок в данных или неточности модели, то есть шумом, мешающим настраивать модель, и должны быть удалены из выборки, см. также робастные методы и одноклассовая классификация.

         Построения доверительной области — области минимального объёма с достаточно гладкой границей, содержащей заданную долю выборки

         Сокращения размерности -заключается в том, чтобы по исходным признакам с помощью некоторых функций преобразования перейти к наименьшему числу новых признаков, не потеряв при этом никакой существенной информации об объектах выборки. В классе линейных преобразований наиболее известным примером является метод главных компонент.

      Заполнения пропущенных значений  — замена недостающих значений в матрице объекты–признаки их прогнозными значениями.

     Частичное обучение занимает промежуточное положение между обучением с учителем и без учителя. Каждый прецедент представляет собой пару «объект, ответ», но ответы известны только на части прецедентов. Пример прикладной задачи — автоматическая рубрикация большого количества текстов при условии, что некоторые из них уже отнесены к каким-то рубрикам.

      Трансдуктивное обучение. Дана конечная обучающая выборка прецедентов. Требуется по этим частным данным сделать предсказания отностительно других частных данных — тестовой выборки. В отличие от стандартной постановки, здесь не требуется выявлять общую закономерность, поскольку известно, что новых тестовых прецедентов не будет. С другой стороны, появляется возможность улучшить качество предсказаний за счёт анализа всей тестовой выборки целиком, например, путём её кластеризации. Во многих приложениях трансдуктивное обучение практически не отличается от частичного обучения.

       Обучение с подкреплением. Роль объектов играют пары «ситуация, принятое решение», ответами являются значения функционала качества, характеризующего правильность принятых решений (реакцию среды). Как и в задачах прогнозирования, здесь существенную роль играет фактор времени. Примеры прикладных задач: формирование инвестиционных стратегий, автоматическое управление технологическими процессами, самообучение роботов, и т.д.

Информация о работе Машинное обучение