Машинное обучение

Автор работы: Пользователь скрыл имя, 17 Декабря 2014 в 17:38, реферат

Описание работы

На данный момент существует целый ряд методов машинного обучения на заранее размеченных данных, используемых специалистами в различных областях. Их применяют везде, где возможно применение логики. Они требуют достаточно большого количества таких данных для получения высоких результатов. При этом, на практике, объем неразмеченных данных значительно превышает объем размеченных данных. Например, объемы изображений рукописного текста значительно превышают объемы размеченных изображений символов

Содержание работы

ВВЕДЕНИЕ
1. МАШИННОЕ ОБУЧЕНИЕ 4
2. ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ ОБУЧЕНИЯ ПО ПРЕЦЕДЕНТАМ 6
3. ТИПОЛОГИЯ ЗАДАЧ ОБУЧЕНИЯ ПО ПРЕЦЕДЕНТАМ 8
4. ПРИЛОЖЕНИЯ 13
5. МЕТОДЫ МАШИННОГО ОБУЧЕНИЯ 15
ЗАКЛЮЧЕНИЕ 26
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Файлы: 1 файл

РЕФЕРАТ.docx

— 115.96 Кб (Скачать файл)

Точность классификации в методе «случайный лес» зависит от численности построенных деревьев решений, а также от их взаимной корреляции. То есть в идеальном случае для каждой рубрики мы должны построить большое количество независимых деревьев решений. Если эффективность каждого конкретного дерева решений падает или возрастает их зависимость, в этом случае снижается и точность классификации этого метода. В случае алгоритма «случайный лес», независимость деревьев решений достигается через случайность в выборе примеров из обучающей выборки и через случайность в выборе для каждого дерева узлов, по которым проводится анализ. 
Метод «случайный лес» обладает множеством положительных особенностей: параллельность работы, высокая точность, быстрая обучаемость, и тенденция к отсутствию переобучаемости.

Также, его положительной особенностью является то, что он показывает высокое качество рубрикации для обучающих выборок, с малым количеством примеров. Это свойство выделяет метод «случайный лес» среди множества других алгоритмов и является чрезвычайно ценным для успешного применения методов машинного обучения.

 

 

 

 

 

 

 

 

 

ЗАКЛЮЧЕНИЕ

В заключении можно сказать что сфера применений машинного обучения постоянно расширяется. Повседневная информатизация приводит к накоплению огромных объемов данных в науке, производстве, бизнесе, транспорте, здравоохранении. Возникающие при этом задачи прогнозирования, управления и принятия решений часто сводятся к обучению по прецедентам. Раньше, когда таких данных не было, эти задачи вообще не становились, либо решались совершенно другими методами.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

 

Айвазян С. А., Енюков И. С., Мешалкин Л. Д. Прикладная статистика: основы моделирования и первичная обработка данных. — М.: Финансы и статистика, 1983.

Айвазян С. А., Енюков И. С., Мешалкин Л. Д. Прикладная статистика: исследование зависимостей. — М.: Финансы и статистика, 1985.

Айвазян С. А., Бухштабер В. М., Енюков И. С., Мешалкин Л. Д. Прикладная статистика: классификация и снижение размерности. — М.: Финансы и статистика, 1989.

Вапник В. Н. Восстановление зависимостей по эмпирическим данным. — М.: Наука, 1979.

Журавлев Ю. И., Рязанов В. В., Сенько О. В. «Распознавание». Математические методы. Программная система. Практические применения. — М.: Фазис, 2006. ISBN 5-7036-0108-8.

Загоруйко Н. Г. Прикладные методы анализа данных и знаний. — Новосибирск: ИМ СО РАН, 1999. ISBN 5-86134-060-9.

Шлезингер М., Главач В. Десять лекций по статистическому и структурному распознаванию. — Киев: Наукова думка, 2004. ISBN 966-00-0341-2.

Hastie, T., Tibshirani R., Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. — 2nd ed. — Springer-Verlag, 2009. — 746 p. — ISBN 978-0-387-84857-0..

Mitchell T. Machine Learning. — McGraw-Hill Science/Engineering/Math, 1997. ISBN 0-07-042807-7.

Ryszard S. Michalski, Jaime G. Carbonell, Tom M. Mitchell (1983), Machine Learning: An Artificial Intelligence Approach, Tioga Publishing Company, ISBN 0-935382-05-4[1].

Vapnik V.N. Statistical learning theory. — N.Y.: John Wiley & Sons, Inc., 1998. [1]

Bernhard Schölkopf, Alexander J. Smola Learning with Kernels. Support Vector Machines, Regularization, Optimization, and Beyond. — MIT Press, Cambridge, MA, 2002 ISBN 978-0-262-19475-4 [2]

I.H. Witten, E. Frank Data Mining: Practical Machine Learning Tools and Techniques (Second Edition). — Morgan Kaufmann, 2005 ISBN 0-12-088407-0 [3]

Liang Wang, Li Cheng, Guoying Zhao Machine Learning for Human Motion Analysis. — IGI Global, 2009. — 318 p. — ISBN 978-1-60566-900-7.

 

 

 


Информация о работе Машинное обучение