Применение фракталов

Автор работы: Пользователь скрыл имя, 16 Декабря 2012 в 22:26, реферат

Описание работы

Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке (например, множество Кантора). Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы».

Содержание работы

1 История
2 Примеры
2.1 Самоподобные множества с необычными свойствами в математике
2.2 Рекурсивная процедура получения фрактальных кривых
2.3 Фракталы как неподвижные точки сжимающих отображений
2.4 Фракталы в комплексной динамике
2.5 Стохастические фракталы
3 Применение фракталов
3.1 Компьютерная графика
3.2 Анализ рынков
3.3 Физика и другие естественные науки
3.4 Литература

Файлы: 1 файл

Фрактал.doc

— 594.50 Кб (Скачать файл)

По той же теореме Банаха, начав с любого компактного множества и применяя к нему итерации отображения Ψ, мы получим последовательность компактов, сходящихся (в смысле метрики Хаусдорфа) к нашему фракталу.

Фракталы в комплексной динамике

Множество Жюлиа́

Фракталы естественным образом  возникают при изучении нелинейных динамических систем. Наиболее изучен случай, когда динамическая система задаётся итерациями многочлена или голоморфной функции комплексной переменной на плоскости. Первые исследования в этой области относятся к началу XX века и связаны с именами Фату и Жюлиа.

Пусть F(z) — многочлен, z0 — комплексное число и рассмотрим следующую последовательность:

.

Нас интересует поведение этой последовательности при  . Эта последовательность может:

  • Стремиться к бесконечности;
  • Стремиться к конечному пределу;
  • Демонстрировать в пределе циклическое поведение, то есть поведение вида
  • Демонстрировать более сложное поведение.

Множества значений z0, для которых последовательность демонстрирует один конкретный тип поведения, а также множества точек бифуркации между различными типами, часто обладают фрактальными свойствами.

Так, множество Жюлиа на картинке справа — множество точек бифуркации для многочлена F(z) = z2 + c, то есть тех значений z0, для которых поведение последовательности zn может резко меняться при сколь угодно малых изменениях z0.

Другой вариант получения фрактальных  множеств — введение параметра в  многочлен F(z) и рассмотрение множества тех значений параметра, при которых последовательность zn демонстрирует определённое поведение при фиксированном z0. Так, множество Мандельброта — это множество всех , при которых zn для F(z) = z2 + c и z0 = 0 не стремится к бесконечности.

Ещё один известный пример такого рода — бассейны Ньютона.

Популярно создание красивых графических  образов на основе комплексной динамики путём раскрашивания точек плоскости  в зависимости от поведения соответствующих  динамических систем. Например, для  дополнения множества Мандельброта можно раскрасить точки в зависимости от скорости стремления zn к бесконечности (определяемой, скажем, как наименьший номер n, при котором | zn | превысит фиксированную большую величину A).

Биоморфы — фракталы, построенные на основе комплексной динамики и напоминающие живые организмы.

Стохастические фракталы

Рандомизированный фрактал на основе множества Жюлиа

Природные объекты часто имеют  фрактальную форму. Для их моделирования  могут применяться стохастические (случайные) фракталы. Примеры стохастических фракталов:

  • траектория броуновского движения на плоскости и в пространстве;
  • граница траектории броуновского движения на плоскости. В 2001 году Лоулер, Шрамм и Вернер доказали предположение Мандельброта о том, что её размерность равна 4/3.
  • эволюции Шрамма-Лёвнера — конформно-инвариантные фрактальные кривые, возникающие в критических двумерных моделях статистической механики, например, в модели Изинга и перколяции.
  • различные виды рандомизированных фракталов, то есть фракталов, полученных с помощью рекурсивной процедуры, в которую на каждом шаге введён случайный параметр. Плазма — пример использования такого фрактала в компьютерной графике.

Фрактальная монотипия, или стохатипия — направления в изобразительном искусстве, заключающиеся в получении изображения случайного фрактала.

Применение фракталов

Компьютерная графика

Фрактальное дерево

Фракталы  широко применяются в компьютерной графике для построения изображений природных объектов, таких, как деревья, кусты, горные ландшафты, поверхности морей и так далее.

Анализ рынков

Последнее время Фракталы стали  популярны у «трейдеров» для анализа курса фондовых бирж, валютных и торговых рынков.

Физика и другие естественные науки

В физике фракталы естественным образом  возникают при моделировании  нелинейных процессов, таких, как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и т. п. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов).

Литература

Среди литературных произведений находят  такие, которые обладают текстуальной, структурной или семантической  фрактальной природой. В текстуальных фракталах потенциально бесконечно повторяются элементы текста:

  • неразветвляющееся бесконечное дерево, тождественное само себе с любой итерации («У попа была собака…», «Притча о философе, которому снится, что он бабочка, которой снится, что она философ, которому снится…», «Ложно утверждение, что истинно утверждение, что ложно утверждение…»)
  • неразветвляющиеся бесконечные тексты с вариациями («У Пегги был весёлый гусь…») и тексты с наращениями («Дом, который построил Джек»).

В структурных фракталах схема  текста потенциально фрактальна:

  • венок сонетов (15 стихотворений), венок венков сонетов (211 стихотворений), венок венков венков сонетов (2455 стихотворений)
  • «рассказы в рассказе» («Книга тысячи и одной ночи», Я.Потоцкий «Рукопись, найденная в Сарагоссе»)
  • предисловия, скрывающие авторство (У.Эко «Имя розы»)
  • Т.Стоппард «Розенкранц и Гильденстерн мертвы» (сцена с представлением перед королём).

В семантических и нарративных  фракталах автор рассказывает о  бесконечном подобии части целому:

  • Х. Л. Борхес «В кругу развалин»
  • Х.Кортасар «Жёлтый цветок»
  • Ж.Перек «Кунсткамера»

Фрактальные антенны

Использование фрактальной геометрии  при проектировании антенных устройств было впервые применено американским инженером Натаном Коэном, который тогда жил в центре Бостона, где была запрещена установка внешних антенн на здания. Натан вырезал из алюминиевой фольги фигуру в форме кривой Коха и наклеил её на лист бумаги, затем присоединил к приёмнику. Оказалось, что такая антенна работает не хуже обычной. И, хотя физические принципы работы такой антенны не изучены до сих пор, это не помешало Коэну основать собственную компанию и наладить их серийный выпуск.

Сжатие изображений

Ещё одно фрактальное дерево

Существуют алгоритмы сжатия изображения с помощью фракталов. Они основаны на идее о том, что вместо изображения можно хранить отображение сжатия, для которого это изображение является неподвижной точкой.

Децентрализованные сети

Система назначения IP-адресов в сети Netsukuku использует принцип фрактального сжатия информации для компактного сохранения информации об узлах сети. Каждый узел сети Netsukuku хранит всего 4 Кб информации о состоянии соседних узлов, при этом любой новый узел подключается к общей сети без необходимости в центральном регулировании раздачи IP-адресов, что, например, характерно для сети Интернет. Таким образом, принцип фрактального сжатия информации гарантирует полностью децентрализованную, а следовательно, максимально устойчивую работу всей сети.

 

Литература

  • Мандельброт Б. Фрактальная геометрия природы. — М.: «Институт компьютерных исследований», 2002.
  • Пайтген Х.-О., Рихтер П. Х. Красота фракталов. — М.: «Мир», 1993.
  • Федер Е. Фракталы. — М: «Мир», 1991.
  • Фоменко А. Т. Наглядная геометрия и топология. — М.: изд-во МГУ, 1993.
  • Фракталы в физике. Труды 6-го международного симпозиума по фракталам в физике, 1985. — М.: «Мир», 1988.
  • Шредер М. Фракталы, хаос, степенные законы. Миниатюры из бесконечного рая. — Ижевск: «РХД», 2001.
  • Кроновер Р. М. Фракталы и хаос в динамических системах. Основы теории.
  • Мандельброт Бенуа, Ричард Л. Хадсон (Не)послушные рынки: фрактальная революция в финансах = The Misbehavior of Markets. — М.: «Вильямс», 2006. — С. 400. — ISBN 5-8459-0922-8



Информация о работе Применение фракталов