Автор работы: Пользователь скрыл имя, 23 Сентября 2012 в 19:30, курсовая работа
Цель курсовой работы — изучение приемов формализации, составления алгоритмов и программирования при решении прикладных задач, а также глубокое овладение языком программирования C++ и приемами программирования в интегрированной среде Borland C++ Builder 5.x-6.x.
Можно считать, что в пределах каждого периода времени поток машин является пуассоновским. При увеличении потока автомобилей для уменьшения простоев в 16.30 открывают пятую кассу, а в 17.00 открывают оставшиеся две кассы. Промоделировать работу заставы в течение нескольких суток. Определить загрузку касс и среднее число автомобилей, ожидающих в очереди на заставе на каждом из интервалов времени, показанных в таблице.
Задание на лабораторную работу. Вариант 65.
Моделирующая программа. Система массового обслуживания.
Модель производственного цеха.
В производственном цехе работают три одинаковых станка. Во всех станках используется деталь, которая время от времени выходит из строя. Как только деталь отказывает, соответствующий станок необходимо выключить. Отказавшую деталь вынимают и на ее место ставят исправную запасную деталь сразу же или как только это станет возможным, и станок вновь включают. Неисправные детали ремонтируют и после ремонта используют снова. Время работы детали распределено по нормальному закону со средним 350 часов и стандартным отклонением 70 часов. Съем отказавшей детали со станка занимает 4 часа. Время установки новой детали составляет 6 часов. Время ремонта неисправной детали распределено по нормальному закону со средним и стандартным отклонением соответственно 8 часов и 0.5 часов. Ремонтом отказавших деталей занимается механик. В его обязанности входит также ремонт некоторых других деталей, поступающих из другого цеха. Эти другие детали поступают по закону Пуассона со средним интервалом между поступлениями 9 часов. Время их ремонта составляет 84 часа. Они имеют более высокий приоритет при ремонте, чем неисправные детали, используемые в рассматриваемых станках. Все три станка не зависят друг от друга за исключением процесса распределения деталей. Имеются только две запасные детали. Смоделировать работу цеха в течение N лет, рассматривая 40-часовую рабочую неделю. Определить степень загрузки станков и механика. Найти среднюю часовую стоимость системы как сумму стоимости простоя станков и стоимости ожидания ремонта другими деталями. Считать, что стоимость простоя станка составляет 25 долларов в час, а стоимость ожидания ремонта другими деталями равна 5 долларам в час для каждой детали. Литература: [15,16].
Задание на лабораторную работу. Вариант 66.
Моделирующая программа. Система массового обслуживания.
Модель химчистки.
В пункте химчистки работают две приемщицы. В среднем за 40-часовую рабочую неделю в приемный пункт обращается 480 клиентов, дожидающихся обслуживания. Среднее время обслуживания клиента — 5 минут. Поток клиентов простейший, а время их обслуживания распределено по показательному закону. Промоделировать работу химчистки в течение рабочей недели. Найти вероятность полного простоя пункта и вероятность наличия очереди. Проанализировать, как будет изменяться вероятность наличия очереди при постепенном уменьшении среднего времени обслуживания клиента до 4 минут с шагом в 10 секунд (построить график).
Задание на лабораторную работу. Вариант 67.
Моделирующая программа. Система массового обслуживания.
Модель продовольственного магазина.
Продовольственный магазин состоит из трех прилавков и основной кассы при выходе. Кроме того, на выходе из магазина имеется экспресс-касса. Покупатели приходят в магазин в соответствии с распределением Пуассона. Среднее значение интервала прихода составляет 75 с. Войдя в магазин, каждый покупатель берет корзинку и может обойти один или несколько прилавков, отбирая продукты. Время, требуемое для обхода прилавка, и число покупок, выбранных у прилавка, распределены равномерно в соответствии с таблицей:
Прилавок | Вероятность покупки | Время обхода прилавка, с | Число покупок у прилавка, шт. |
1 | 0.75 | 12060 | 31 |
2 | 0.55 | 15030 | 41 |
3 | 0.82 | 12045 | 51 |
После того как товар отобран, покупатель становится в конец очереди к основной кассе. Стоя в очереди, покупатель может захотеть сделать еще 21 покупки. Покупатели с тремя и меньшим числом покупок (не считая возможной дополнительной покупки) пользуются экспресс-кассой. Все другие покупатели проходят через обычную кассу. Если у контролера экспресс-кассы нет работы, то покупателю из начала очереди у основной кассы разрешается перейти к экспресс-кассе. Время обслуживания покупателя в любой кассе пропорционально числу сделанных покупок, на одну покупку уходит 3 с проверки. После оплаты продуктов покупатель оставляет корзинку и уходит. Построить модель, описывающую процесс покупок в продовольственном магазине. Провести моделирование N 8-часовых рабочих дней. Определить нагрузку кассиров и максимальные длины очередей перед кассой. Найти необходимое количество корзинок для бесперебойной работы магазина. Как изменятся указанные характеристики, если среднее значение интервала прихода покупателей составит T (T030) с ? Литература: [15,16].
Задание на лабораторную работу. Вариант 68.
Моделирующая программа. Система массового обслуживания.
Модель ремонтного ателье.
Ателье по ремонту различной радиоаппаратуры имеет 5 мастеров. В среднем в течение рабочего дня (он составляет 7 часов) от населения поступает в ремонт 10 радиоаппаратов. Поток заявок на ремонт аппаратуры является пуассоновским. Статистика показала, что в среднем в течение рабочего дня каждый из мастеров в ателье успевает отремонтировать 2.5 радиоаппарата. Смоделировать работу ателье в течение N рабочих дней. Найти вероятность того, что все мастера свободны от ремонта, среднее время обслуживания каждого прибора в ателье, среднюю длину очереди заявок на ремонт, среднее время ожидания каждого неисправного аппарата в начале ремонта. Литература: [15,16].
Задание на лабораторную работу. Вариант 69.
Моделирующая программа. Система массового обслуживания.
Модель работы станка.
В станке используют две детали А и В, которые периодически выходят из строя. Как только деталь А или В отказывает, станок отключают. Затем отказавшую деталь вынимают, вместо нее ставят исправную запасную (если она имеется или как только она появится) и станок вновь включают. И деталь А, и деталь В можно отремонтировать и использовать снова. Время работы деталей А и В распределено по нормальному закону со средним и стандартным отклонением соответственно: А — 350 час и 70 час; В — 450 час и 90 час. Съем любой отказавшей детали со станка занимает 4 час, а установка заменяющей ее детали этого же типа требует 6 час. Время ремонта неисправной детали А распределено по нормальному закону со средним 8 час и стандартным отклонением 0.5 час, а время ремонта детали В в соответствии с таблицей:
Время ремонта, |
менее 5 |
6 |
7 |
8 |
9 |
Суммарная |
0.00 |
0.22 |
0.57 |
0.83 |
1.00 |
Ремонт деталей А и В в порядке их поступления выполняет механик. Кроме того, он ремонтирует другие детали, имеющие при ремонте высший приоритет. Эти другие детали поступают по закону Пуассона со средним интервалом 9 час. Время, требуемое на их ремонт, составляет 84 час. Имеется две запасные детали типа А и одна запасная деталь типа В. Смоделировать работу станка в течение N лет, считая, что рабочая неделя состоит из 40 час. Определить загрузку станка, загрузку механика, среднюю длину очереди деталей к механику. Литература: [15,16].
Задание на лабораторную работу. Вариант 70.
Моделирующая программа. Система массового обслуживания.
Модель парикмахерской.
Парикмахерская имеет трех мастеров, каждый из которых на обслуживание одного клиента тратит в среднем 10 минут. Клиенты образуют простейший поток со средним числом поступлений 12 человек в час. Клиенты становятся в очередь, если к моменту их прихода в очереди менее трех человек, в противном случае они покидают парикмахерскую. Промоделировать работу парикмахерской в течение рабочего дня. Определить вероятность отсутствия клиентов в парикмахерской, вероятность того, что клиент покинет парикмахерскую не обслуженным, вероятность того, что все мастера будут заняты работой, среднее число клиентов в очереди, среднее число клиентов в парикмахерской вообще.
Информация о работе Программирование на языке высокого уровня