Лекции по "Основы построения телекоммуникационных систем"

Автор работы: Пользователь скрыл имя, 10 Июля 2013 в 10:15, курс лекций

Описание работы

Лекция 1. Архитектура и топология сетей связи. Методы коммутации

Телекоммуникации являются основой развития общества. Постоянно растущий спрос как на обычные телефонные услуги, так и на новые виды услуг связи, включая услуги Интернет, предъявляет новые требования к современным сетям связи и качеству предоставляемых услуг. С другой стороны, совершенствование телекоммуникационного оборудования и развитие на его основе современных сетей связи приводит к усложнению процесса построения и значительным затратам на создание таких сетей.

Файлы: 27 файлов

Контрольные вопросы для экзамена в 2013 г..docx

— 15.98 Кб (Просмотреть файл, Скачать файл)

Лекции 20-21.Сигнализация на телефонных сетях связи.doc

— 201.00 Кб (Просмотреть файл, Скачать файл)

Лекции 27-28 Беспроводная связь.doc

— 319.50 Кб (Скачать файл)

Подключение к сети

MAC уровень 802.11 несёт  ответственность за то, каким  образом клиент подключается  к точке доступа. Когда клиент 802.11 попадает в зону действия  одной или нескольких точек доступа, он на основе мощности сигнала и наблюдаемого значения количества ошибок выбирает одну из них и подключается к ней. Как только клиент получает подтверждение того, что он принят точкой доступа, он настраивается на радиоканал, в котором она работает. Время от времени он проверяет все каналы 802.11, чтобы посмотреть, не предоставляет ли другая точка доступа службы более высокого качества. Если такая точка доступа находится, то станция подключается к ней, перенастраиваясь на её частоту (рис.11).

Рис. 11 Подключение к сети и иллюстрация правильного назначения каналов для точек доступа.

Переподключение обычно происходит в том случае, если станция  была физически перемещена вдаль от точки доступа, что вызвало ослабление сигнала. В других случаях повторное подключение происходит из-за изменения радиочастотных характеристик здания, или просто из-за большого сетевого трафика через первоначальную точку доступа. В последнем случае эта функция протокола известна как "балансировка нагрузки", так как её главное назначение – распределение общей нагрузки на беспроводную сеть наиболее эффективно по всей доступной инфраструктуре сети.

Процесс динамического  подключения и переподключения позволяет сетевым администраторам устанавливать беспроводные сети с очень широким покрытием, создавая частично перекрывающиеся "соты". Идеальным вариантом является такой, при котором соседние перекрывающиеся точки доступа будут использовать разные DSSS каналы, чтобы не создавать помех в работе друг другу (Рис.11).

Поддержка потоковых  данных

Потоковые данные, такие  как видео или голос, поддерживаются в спецификации 802.11 на MAC уровне посредством Point Coordination Function (PCF). В противоположность Distributed Coordination Function (DCF), где управление распределено между всеми станциями, в режиме PCF только точка доступа управляет доступом к каналу. В том случае, если установлен BSS с включенной PCF, время равномерно распределяется промежутками для работы в режиме PCF и в режиме CSMA/CA. Во время периодов, когда система находится в режиме PCF, точка доступа опрашивает все станции на предмет получения данных. На каждую станцию выделяется фиксированный промежуток времени, по истечении которого производится опрос следующей станции. Ни одна из станций не может передавать в это время, за исключением той, которая опрашивается. Так как PCF даёт возможность каждой станции передавать в определённое время, то гарантируется максимальная латентность. Недостатком такой схемы является то, что точка доступа должна производить опрос всех станций, что становится чрезвычайно неэффективным в больших сетях.

Управление питанием

Дополнительно по отношению  к управлению доступом к носителю, MAC уровень 802.11 поддерживает энергосберегающие режимы для продления срока службы батарей мобильных устройств. Стандарт поддерживает два режима потребления энергии, называемые "режим продолжительной работы" и "сберегающий режим". В первом случае радио всегда находится во включенном состоянии, в то время как во втором случае радио периодически включается через определённые промежутки времени для приёма "маячковых" сигналов, которые постоянно посылает точка доступа. Эти сигналы включают в себя информацию относительно того, какая станция должна принять данные. Таким образом, клиент может принять маячковый сигнал, принять данные, а затем вновь перейти в "спящий" режим.

Безопасность

802.11b обеспечивает контроль  доступа на MAC уровне (второй уровень  в модели ISO/OSI), и механизмы шифрования, известные как Wired Equivalent Privacy (WEP), целью которых является обеспечение беспроводной сети средствами безопасности, эквивалентными средствам безопасности проводных сетей. Когда включен WEP, он защищает только пакет данных, но не защищает заголовки физического уровня, так что другие станции в сети могут просматривать данные, необходимые для управления сетью. Для контроля доступа в каждую точку доступа помещается так называемый ESSID (или WLAN Service Area ID), без знания которого мобильная станция не сможет подключиться к точке доступа. Дополнительно точка доступа может хранить список разрешённых MAC адресов, называемый списком контроля доступа (Access Control List, ACL), разрешая доступ только тем клиентам, чьи MAC адреса находятся в списке.

Для шифрования данных стандарт предоставляет возможности шифрования с использованием алгоритма RC4 с 40-битным разделяемым ключом. После того, как станция подключается к точке  доступа, все передаваемые данные могут  быть зашифрованы с использованием этого ключа. Когда используется шифрование, точка доступа будет посылать зашифрованный пакет любой станции, пытающейся подключиться к ней. Клиент должен использовать свой ключ для шифрования корректного ответа для того, чтобы аутентифицировать себя и получить доступ в сеть. Выше второго уровня сети 802.11b поддерживают те же стандарты для контроля доступа и шифрования (например, IPSec), что и другие сети 802.

Безопасность для здоровья

Так как мобильные  станции и точки доступа являются СВЧ устройствами, у многих возникают вопросы по поводу безопасности использования компонентов Wave LAN. Известно, что чем выше частота радиоизлучения, тем опаснее оно для человека. В частности, известно, что если посмотреть внутрь прямоугольного волновода, передающего сигнал частотой 10 или более ГГц, мощностью около 2 Вт, то неминуемо произойдёт повреждение сетчатки глаза, даже если продолжительность воздействия составит менее секунды. Антенны мобильных устройств и точек доступа являются источниками высокочастотного излучения, и хотя мощность излучаемого сигнала очень невелика, всё же не следует находиться в непосредственной близости от работающей антенны. Как правило, безопасным расстоянием является расстояние порядка десятков сантиметров от приёмо-передающих частей. Более точное значение можно найти в руководстве к конкретному прибору.

Дальнейшее развитие

В настоящее время  разрабатываются два конкурирующих  стандарта на беспроводные сети следующего поколения – стандарт IEEE 802.11a и  европейский стандарт HIPERLAN-2. Оба  стандарта работают во втором ISM диапазоне, использующем полосу частот в районе 5 ГГц. Заявленная скорость передачи данных в сетях нового поколения составляет 54 Mbps.

 

Технология Bluetooth

 

Технология Bluetooth использует нелицензируемый (практически везде, кроме России) частотный диапазон 2,4÷2,4835ГГц. При этом используются широкие защитные полосы: нижняя граница частотного диапазона составляет 2ГГц, а верхняя - 3,5ГГц. Точность заданий частоты (положение центра спектра) задается с точностью ± 75 кГц. Дрейф частоты в этот интервал не входит. Кодирование сигнала осуществляется по двухуровневой схеме GFSK (Gaussian Frequency Shift Keying). Логическому 0 и 1 соответствуют две разные частоты. В оговоренной частотной полосе выделяется 79 радиоканалов по 1 МГц каждый. В некоторых странах используется меньшее число каналов (например, во Франции - 23). Каждый из каналов структурируется с помощью выделения временных слотов (доменов) длительностью 625 мкс (разделение по времени). По мощности передатчики делятся на три класса: 100мВт (для связи до 100м; 20дБм); 2 мВт (до 10м; 4дБм) и 1 мВт (~10см; 0дБм). Коэффициент модуляции при этом лежит в диапазоне (0,28-0,35). Чувствительность приемника должна быть не хуже 70дБм. BER (Bit Error Rate) для приемника должна находиться на уровне <0,1%. Желательно, чтобы приемник имел индикатор мощности входного сигнала (требование является опционным). Для первого класса предусмотрено регулирование мощности. Регулировка осуществляется на основе анализа числа ошибок. Протокол использует коммутацию каналов и пакетов. Передача данных выполняется с использованием алгоритма доступа Time-Division Duplex Multiple Access. Каждый пакет передается с использованием иного частотного канала по отношению к предыдущему. Производится 1600 переключений частоты в секунду. Последовательность переключения частот определяется BD_ADDR мастера. Скачкообразное переключение частоты отводит на переходные процессы 250-260 мксек. Длительность тика часов мастера равна 312,5 мксек, что определяет частоту часов - 3,2 кГц. Допускается временная неопределенность при приеме, равная ±20мксек.

Структура протоколов Bluetooth не следует  моделям OSI, TCP/IP и даже 802 (ведутся  работы по адаптации Bluetooth к модели IEEE 802). Физический уровень протокола  соответствует базовым принципам моделей OSI и 802. Разработчики потратили много усилий, чтобы сделать протокол как можно дешевле для реализации. В среднем временная привязка мастерных пакетов не должна дрейфовать больше чем на 20 10-6 относительно идеальной временной привязки слота в 625мксек. Временной разброс при этом не должен превышать 1 мксек. В спецификации определено 5 уровней: физический, базовый, сетевой и уровень приложений.

На уровне baseband протокола определено 13 типов пакетов. Пакеты ID, NULL, POLL, FHS , DM1 ориентированы на каналы SCO и ACL. Пакеты DH1, AUX1, DM3, DH3, DM5 и DH5 предназначены только для каналов ACL. Кодирование данных в пакетах DM1, DM2 и DM3 осуществляется с привлечением битов четности по алгоритму FEC 2/3 (5 бит управления на 10 бит данных). Форматы пакетов HV1, HV2, HV3 и DV определены только для каналов SCO. Максимальный размер поля данных (341 байт) имеют пакеты DH5. Уровень протокола baseband специфицирует пять логических каналов: LC (Control Channel) и LM (Link Manager) используются на канальном уровне, а UA (User Asynchronous), UI (User Isosynchronous) и US (User Synchronous) служат для асинхронной, изосинхронной и синхронной транспортировки пользовательских данных. Контроллер BlueTooth может работать автономно (Standby) или в режиме соединения. Предусмотрено семь субсостояний, которые используются для добавления клиента или подключения к пикосети: page, page scan, inquiry, inquiry scan, master response, slave response и inquiry response.

Состояние Standby по умолчанию является режимом с пониженным энергопотреблением, при этом работает только внутренний задающий генератор. В состоянии соединения главный узел (master) и клиент (slave) могут обмениваться пакетами, используя код доступа к каналу.

В протоколе baseband предусмотрено три  типа схем коррекции ошибок: 1/3 FEC, 2/3 FEC и ARQ.

 

  • В 1/3 FEC каждый бит повторяется три раза.
  • В 2/3 FEC используется полиномиальный генератор для получения 15-битовых кодов для исходных 10 бит.
  • В схеме ARQ пакеты DM, DH и поле данных пакета DV передаются повторно до тех пор, пока не будет получено подтверждение или не произойдет таймаут. При таймауте возможно продолжение со следующего пакета.

 

Протоколом baseband рекомендуется использование  буферов типа FIFO. Если данные не могут  быть приняты, контроллер приема (Link Controller) вставляет в заголовок отклика индикатор stop. Когда передачик получает индикатор stop, он блокирует очереди в FIFO. Получатель может возобновить процесс передачи, послав отправителю индикатор go. Взаимодействие протоколов в рамках Bluetooth показано на рис.12

 

Рис. 12. Взаимодействие сетевых субуровней в протоколе Bluetooth

 

Соединение между устройствами присходит следующим образом: если ничего не известно об удаленном устройстве, используются прцедуры inquiry и page. Если некоторая информация о партнере имеется, то достаточно процедуры page.

 

Этап 1

 
 

Процедура inquiry позволяет устройству определить, какие приборы доступны, выяснить адреса и осуществить синхронизацию.

 

1.1

Посылаются пакеты inquiry и получаются отклики.

 

1.2

Будем считать, что блок (адресат), получивший пакет inquiry, находится в  состоянии inquiry scan (тогда он способен принимать такие пакеты)

 

1.3

Получатель переходит в состояние inquiry response и посылает отправителю пакет-отклик.


 

После того как процедура inquiry завершена, соединение может быть установлено с помощью процедуры paging.

 

Этап 2

 
 

Процедура paging реализует соединение. Для осуществления этой процедуры необходим адрес. Устройство, выполняющее процедуру paging, атоматически становится хозяином этого соединения.

 

2.1

Посылается пакет paging

 

2.2

Адресат получет этот пакет (находится  в состоянии page Scan)

 

2.3

Получатель посылает отправителю  пакет-отклик (находится в состоянии Slave Response)

 

2.4

Инициатор посылает адресату пакет FHS (находится в состоянии Master Response)

 

2.5

Получатель посылает отправителю  второй пакет-отклик (находится в  состоянии Slave Response)

 

2.6

Получатель и отправитель устанавливают параметры канала заданные инициатором (находятся в состоянии Master Response & Slave Response)


 

После установления соединения главный  узел (master) посылает пакет POLL, чтобы  проверить, синхронизовал ли клиент свои часы и настроился ли на коммутацию частот. Клиент при этом может откликнуться любым пакетом.

Устройство Bluetooth при установлении соединения может работать в четырех  режимах: Active, Hold, Sniff и Park (активный, удержание, прослушивание и пассивный, соответственно)

 

Рис. 13 Две пикосети, образующие рассеянную сеть (Э. Таненбаум "Компьютерные сети", Питер, 2003)

 

Основу сети BlueTooth составляют пикосети (piconet), состоящие из одного главного узла и до семи клиентских узлов, размещенных в радиусе 10м (смотри рис. 13). Все узлы такой сети работают на одной частоте и разделяют общий канал. В одной достаточно большой комнате могут располагаться несколько пикосетей. Эти сети могут связываться друг с другом через мосты. Пикосети, объедиененные вместе составляют рассеянную (scatternet) сеть. Поскольку в каждой пикосети имеется свой master, последовательность и фазы переключения их частот не будут совпадать. Если пикосети взаимодействуют друг с другом, это приводит к понижению пропускной способности. Устройство BlueTooth может выступать в качестве клиента в нескольких пикосетях, но главным узлом (master) может быть только в одной пикосети. Кроме 7 активных клиентских узлов главный узел может поддерживать до 255 пассивных (спящих) узлов (переведенных управляющим узлом в режим пониженного энергопотребления).

Иногда мастер и клиент могут  захотеть поменяться ролями.

Лекция 1. Архитектура и топология сетей связи. Методы коммутации.doc

— 475.00 Кб (Просмотреть файл, Скачать файл)

Лекция 10.Передача дискретных сообщений по каналам связи.doc

— 112.00 Кб (Просмотреть файл, Скачать файл)

Лекция 11. Методы передачи данных канального уровня.doc

— 94.50 Кб (Просмотреть файл, Скачать файл)

Лекция 12.Базовые технологии локальных сетей.doc

— 97.00 Кб (Просмотреть файл, Скачать файл)

Лекция 15. Протоколы маршрутизации.doc

— 81.50 Кб (Просмотреть файл, Скачать файл)

Лекция 13.Способы построения составных комьютерных сетей.doc

— 95.00 Кб (Просмотреть файл, Скачать файл)

Лекция 14.Принципы работы IP сетей. doc.doc

— 80.50 Кб (Просмотреть файл, Скачать файл)

Лекция 16. Глобальные сети.doc

— 154.50 Кб (Просмотреть файл, Скачать файл)

Лекция 17. Сети ISDN.doc

— 94.50 Кб (Просмотреть файл, Скачать файл)

Лекция 18.Технология ATM.doc

— 166.00 Кб (Просмотреть файл, Скачать файл)

Лекция 19. Система и план нумерации на сетях связи.doc

— 337.00 Кб (Просмотреть файл, Скачать файл)

Лекция 2. Требования к сетям связи.doc

— 69.00 Кб (Просмотреть файл, Скачать файл)

Лекция 22-23. Подключение к глобальным сетям с помощью модемов.doc

— 151.50 Кб (Просмотреть файл, Скачать файл)

Лекция 24. IP-телефония.doc

— 170.50 Кб (Просмотреть файл, Скачать файл)

Лекция 26. Системы сотовой связи.doc

— 678.00 Кб (Просмотреть файл, Скачать файл)

Лекция 25. Интеллектуальные сети связи_ сокр. вар..doc

— 163.50 Кб (Просмотреть файл, Скачать файл)

Лекция 29. Единая сеть электросвязи РФ.doc

— 52.00 Кб (Просмотреть файл, Скачать файл)

Лекция 3 Построение автоматически коммутируемых телефонных сетей.doc

— 95.00 Кб (Просмотреть файл, Скачать файл)

Лекция 4. Принципы построения СП с ЧРК и ВРК.doc

— 150.50 Кб (Просмотреть файл, Скачать файл)

Лекция 5. Технология SDH.doc

— 3.94 Мб (Просмотреть файл, Скачать файл)

Лекция 6. Модульность и стандартизация.doc

— 41.50 Кб (Просмотреть файл, Скачать файл)

Лекция 7.Техника коммутации каналов.doc

— 82.00 Кб (Просмотреть файл, Скачать файл)

Лекция 8. Принципы построения компьютерных сетей.doc

— 102.00 Кб (Просмотреть файл, Скачать файл)

Лекция 9.Эталонная модель ВОС.doc

— 96.00 Кб (Просмотреть файл, Скачать файл)

Информация о работе Лекции по "Основы построения телекоммуникационных систем"