Автор работы: Пользователь скрыл имя, 10 Декабря 2013 в 14:36, курсовая работа
О роли математики в современном мире, о математизации знаний написано немало различных книг. Стало очевидным, что в наше время трудно указать область математики, не нашедшую применения в огромном разнообразии проблем практики, а также область человеческого знания, которая не пользовалась бы математическими методами. Необходимо не только описывать уже установленные факты, но и предсказывать новые закономерности.
Введение. … 3
Глава 1.
1.1. История возникновения и этапы развития теории дедукции. … 6
1.2. Общая характеристика дедукции и дедуктивных умозаключений. … 8
1.3. Структура дедуктивных умозаключений. … 11
1.4. Дедуктивные рассуждения в курсе математики начальных классов… 14
1.5. Роль математики в развитии логического мышления детей. … 18
1.6. Психолого-педагогические особенности младших школьников. … 21
Глава 2.
2.1 Стандарт начального общего образования по математике … 25
2.2 Обзор авторских программ … 28
Заключение. … 30
Список литературы. … 33
МИНОБРНАУКИ РОССИИ
федеральное государственное
бюджетное образовательное
высшего профессионального образования
«Поволжская государственная социально-гуманитарная академия»
(ПГСГА)
Курсовая работа по математике
|
Выполнил: студент 1 курса очной формы обучения направления 050100.62 «Педагогическое образование» профили «Начальное образование» и «Иностранный язык» Григорьева Анастасия Вячеславовна Подпись_______________________
Курсовая работа защищена «___»__________________2013 г. Оценка______________________
Научный руководитель: К.п.н. доцент кафедры Лысогорова Л.В. Подпись_______________________
|
Самара 2013
Содержание
Введение. … 3
Глава 1.
1.1. История возникновения и этапы развития теории дедукции. … 6
1.2. Общая характеристика дедукции и дедуктивных умозаключений. … 8
1.3. Структура дедуктивных умозаключений. … 11
1.4. Дедуктивные рассуждения в курсе математики начальных классов… 14
1.5. Роль математики в развитии логического мышления детей. … 18
1.6. Психолого-педагогические особенности младших школьников. … 21
Глава 2.
2.1 Стандарт начального общего образования по математике … 25
2.2 Обзор авторских
программ
Заключение. … 30
Список литературы. … 33
Введение.
О роли математики в современном мире, о математизации знаний написано немало различных книг. Стало очевидным, что в наше время трудно указать область математики, не нашедшую применения в огромном разнообразии проблем практики, а также область человеческого знания, которая не пользовалась бы математическими методами. Необходимо не только описывать уже установленные факты, но и предсказывать новые закономерности. Математизация наших знаний состоит не только в том, чтобы использовать готовые математические методы и результаты, но и в том, чтобы наиболее полно и точно описывать интересующий нас круг явлений, выводить следствия и использовать полученные результаты для практической деятельности.
Реализация современной роли математики предполагает улучшение математической подготовки учащихся, важное место, в которой отводится умению открывать закономерности, обосновывать их и применять на практике. Особенностью математики, которая отличает ее как от естествознания, так и от опытных наук вообще, является, как правило, дедуктивный характер ее доказательств. В опытных науках мы постоянно обращаемся к наблюдениям и экспериментам, чтобы проверить те или иные утверждения. Совершенно иначе обстоит дело в математике. Теорема считается доказанной только в том случае, если она логически выведена из других предложений. Поэтому проблема обучения учащихся приемам дедукции всегда являлась одной из центральных в методике преподавания математики.
В настоящее время актуальность умения строить дедуктивные умозаключения возросла. Дело в том, что осуществляемый процесс гуманизации образования предполагает направленность обучения на развитие личности, в частности на развитие различных мыслительных процессов, чему способствует обучение построению дедуктивных умозаключений. Другими словами, обучение построению дедуктивного умозаключения должно быть одной из целей математического образования и являться составляющей основы конструирования содержания обучения математики в начальной и средней школе. Последнее заставляет взглянуть на проблему обучения дедукции учащихся с более широких позиций.
С переходом в среднее
звено школы учащиеся знакомятся
с таким предметом как
Однако при кажущемся обилии научного материала по этой тематике приходится признать, что конкретного фактического материала, позволяющего строить обучение школьников с учетом особенностей логического мышления, нет. Существует множество методических пособий по курсу математики в начальной школе, но в ходе нашей работы нам не встретилось ни одного, в котором были бы собраны и обобщены данные, позволяющие развивать в системе логическое мышление школьников на уроках математики, не выходя за рамки курса. Поэтому мы получаем противоречие: с одной стороны мы имеем огромное количество методических пособий и сборников интересных заданий, а с другой – неумение или нежелание учителей обучать детей строить дедуктивные умозаключения при решении задач, проводить аналитико-синтетическую работу на уроке. Обычно все сводится к записи решения задачи или нахождению значения того или иного выражения. И затрагивая вопрос о целесообразности нашей работы можно сказать, что данное исследование не только возможно, но, на наш взгляд, и необходимо провести.
Умение строить дедуктивные рассуждения (умозаключения) является основным методом математической науки и одним из особых средств усвоения курса математики в средней школе. Осуществление преемственности между обучением в начальных классах и в средней школе очень важно. Уже в младших классах надо проводить определенную работу по формированию умения строить правильные дедуктивные умозаключения. В процессе обучения дедуктивным умозаключениям, обращаясь к наблюдению, сравнению, то есть доступным для них операциям, которые активизируют деятельность и на основе которых они могут самостоятельно сделать вывод. Возможность же использования дедуктивных рассуждений (умозаключений) в начальных классах на первый взгляд довольно ограничена, тем не менее, дедуктивные рассуждения следует использовать при изучении начального курса математики, так как именно они воспитывают строгость, четкость и лаконичность мышления.
И если мы будем строить дедуктивные умозаключения при решении математических задач, то с одной стороны учащиеся будут учиться правильно мыслить, а с другой – совершенствовать умение решать поставленные перед ними задачи, аргументировано и доказательно.
Объектом нашего исследования является умение строить дедуктивные умозаключения при решении задач на уроках математики.
Предметом нашего исследования стала методика, позволяющая научить детей строить дедуктивные умозаключения при решении задач, используя различный математический материал.
Целью нашего исследования являлось рассмотрение системы заданий, позволяющих развивать умение строить дедуктивные умозаключения на уроках математики.
После анализа литературы по интересующему нас вопросу мы выдвинули гипотезу, что развивать умение строить дедуктивные умозаключения, учить рассуждать и доказывать на уроках математики, возможно при условии использования системы всевозможных задач.
Назовем задачи, которые определили содержание и структуру нашего исследования в его теоретической и экспериментальной частях:
Глава 1.
1. 1. История возникновения и этапы развития теории дедукции.
Чтобы повысить общекультурный уровень учащихся, учителю необходимо знать, как же возникла дедукция и какие этапы проходила.
Впервые теория дедукции была обстоятельно разработана Аристотелем. Он выяснил требования, которым должны отвечать отдельные мысли, входящие в состав дедуктивного умозаключения; определил значение терминов и раскрыл правила некоторых видов дедуктивных умозаключений. Положительной стороной аристотелевского учения о дедукции является то, что в нем отобразились реальные закономерности объективного мира.
Переоценка дедукции и ее роли в процессе познания особенно характерна для Декарта. Он считал, что к познанию вещей человек приходит двумя путями: путем опыта и дедукции. Но опыт вводит часто нас в заблуждение, тогда как дедукция избавлена от, этого недостатка.
Английский философ Д. С. Милль утверждал, что дедукции вообще не существует, что дедукция - это только момент индукции. По его мнению, люди всегда заключают от наблюдавшихся случаев к наблюдавшимся случаям, а общая мысль, с которой начинается дедуктивное умозаключение, - это всего лишь словесный оборот, обозначающий суммирование тех случаев, которые находились в нашем наблюдении, только запись об отдельных случаях, сделанная для удобства. Единичные случаи, по его мнению, представляют собою единственное основание вывода.
В процессе изучения индукции
и дедукции можно рассматривать
их раздельно, но в действительности,
говорил русский логик
В правильном мышлении, таким образом, одинаково важны и индукция, и дедукция. Они составляют две неразрывные стороны единого процесса познания, которые дополняют друг друга. Нельзя себе представить такое мышление, которое совершается только индуктивно или только дедуктивно. Индукция в процессе реального опытного исследования осуществляется в неразрывной связи с дедукцией.
Под термином “дедукция” в узком смысле слова понимают также следующее:
1. Метод исследования,
заключающийся в следующем:
2. Форма изложения материала в книге, лекции, докладе, в беседе, когда от общих положений, правил, законов идут к менее общим положениям, правилам, законам.2
Из всего выше сказанного мы можем сделать вывод, что учителю необходимо не только знать историю, но и знать определение дедукции, а так же правила ее построения.
1. 2. Общая характеристика дедукции и дедуктивных умозаключений.
Дедукция (лат. deductio - выведение) - в широком смысле слова - такая форма мышления, когда новая мысль выводится чисто логическим путем (по законам логики) из предшествующих мыслей. Такая последовательность мыслей называется выводом, а каждый компонент этого вывода является либо ранее доказанной мыслью, либо аксиомой, либо гипотезой. Последняя мысль данного вывода называется заключением.3
Процессы дедукции на строгом уровне описываются в исчислениях математической логики.
В узком смысле слова, принятом в традиционной логике, под термином “дедукция” понимают дедуктивное умозаключение, то есть такое умозаключение, в результате которого получается новое знание о предмете или группе предметов на основании уже имеющегося некоторого знания о них, и применения к ним некоторого правила логики.
Дедуктивное умозаключение, являющееся предметом традиционной логики, применяется нами всякий раз, когда требуется рассмотреть какое - либо явление на основании уже известного нам общего положения и вывести в отношении этого явления необходимое заключение.
Структура дедуктивного умозаключения и принудительный характер его правил, заставляющих принять заключение, логически вытекающее из посылок, отобразили самые распространенные отношения между предметами материального мира: отношения рода, вида и особи, то есть общего, частного и единичного.
Именно это и отобразилось в дедуктивном умозаключении: единичное и частное подводится под общее.
Дедукция играет большую роль в нашем мышлении. Во всех случаях, когда конкретный факт мы подводим под общее правило и затем из общего правила выводим какое-то заключение в отношении этого конкретного факта, мы делаем заключение в форме дедукции. И если посылки истинны, то правильность вывода будет зависеть от того, насколько строго мы придерживались правил дедукции, в которых отобразились закономерности материального мира. Так, чтобы удостовериться в том, что заключение действительно вытекает из посылок, которые иногда даже не все высказываются, а только подразумеваются, мы придаем дедуктивному рассуждению форму силлогизма: находим большую посылку, подводим под нее меньшую посылку и затем выводим заключение. При этом обращаем внимание на то, насколько в умозаключении соблюдены правила силлогизма. Применение дедукции на основе формализации рассуждений облегчает нахождение логических ошибок и способствует более точному выражению мысли.4
Информация о работе Дедуктивные размышления в начальном курсе математики