Автор работы: Пользователь скрыл имя, 11 Октября 2013 в 20:45, курсовая работа
Никто не будет спорить с тем, что каждый учитель должен развивать логическое мышление учащихся. Об этом говорится в методической литературе, в объяснительных записках к учебным программам. Однако, как это делать, учитель не всегда знает. Нередко это приводит к тому, что развитие логического мышления в значительной мере идет стихийно, поэтому большинство учащихся, даже старшеклассников, не овладевает начальными приемами логического мышления (анализ, сравнение, синтез, абстрагирование и др.)
Введение 2
Глава I. Теоретические аспекты использования логических задач на уроках математики в начальной школе……………………………………………..5
1.1 Логико-психологические проблемы начальной математики как учебного предмета 5
1.2 Психологические предпосылки использования нестандартных логических задач на уроке математики в начальной школ9
1.3. Методика работы с логическими задачами на уроках математики в начальной школе…………………………………………………………………..15
Глава II. Методика использования логических задач на уроках математики в начальной школе 14
2.1 Интегрированное обучение и развитие мышления в простой игре 19
2.2 Организация различных форм работы с логическими задачами 29
Заключение ………………………………………………………………………...32
Список используемой литературы……………………………………………….34
Приложение 1……………………………………………………………………...35
Анализируя становление классификации, Ж. Пиаже и Б. Инельдер показывают, как от ее исходной формы, от создания "фигурной совокупности", основанной лишь на пространственной близости объектов, дети переходят к классификации, основанной уже на отношении сходства ("нефигурные совокупности"), а затем к самой сложной форме - к включению классов, обусловленному связью между объемом и содержанием понятия. Авторы специально рассматривают вопрос о формировании классификации не только по одному, но и по двум-трем признакам, о формировании у детей умения изменять основание классификации при добавлении новых элементов. Аналогичные стадии авторы находят и в процессе становления сериации.
Эти исследования преследовали вполне определенную цель - выявить закономерности формирования операторных структур ума и прежде всего такого их конституирующего свойства как обратимость, т.е. способности ума двигаться в прямом и обратном направлении. Обратимость имеет место тогда, когда "операции и действия могут развертываться в двух направлениях, и понимание одного из этих направлений вызывает ipso facto (в силу самого факта) понимание другого" ([10], стр. 15).
Ж. Пиаже считает, что психологическое исследование развития арифметических и геометрических операций в сознании ребенка (особенно тех логических операций, которые осуществляют в них предварительные условия) позволяет точно соотнести операторные структуры мышления со структурами алгебраическими, структурами порядка и топологическими. Так, алгебраическая структура ("группа") соответствует операторным механизмам ума, подчиняющимся одной из форм обратимости - инверсии (отрицанию). Группа имеет четыре элементарных свойства: произведение двух элементов группы также дает элемент группы; прямой операции соответствует одна и только одна обратная; существует операция тождества; последовательные композиции ассоциативны. На языке интеллектуальных действий это означает:
Структуре порядка соответствует такая форма обратимости, как взаимность (перестановка порядка). В период от 7 до 11 лет система отношений, основанная на принципе взаимности, приводит к образованию в сознании ребенка структуры порядка.
Рассмотрим основные положения, сформулированные Ж. Пиаже, применительно к вопросам построения учебной программы. Прежде всего, исследования Ж. Пиаже показывают, что в период дошкольного и школьного детства у ребенка формируются такие операторные структуры мышления, которые позволяют ему оценивать фундаментальные характеристики классов объектов и их отношений. Причем уже на стадии конкретных операций (с 7 - 8 лет) интеллект ребенка приобретает свойство обратимости, что исключительно важно для понимания теоретического содержания учебных предметов, в частности математики.
Эти данные говорят о том, что традиционная психология и педагогика не учитывали в достаточной мере сложного и емкого характера тех стадий умственного развития ребенка, которые связаны с периодом от 7 до 11 лет.
Сам Ж. Пиаже эти операторные
структуры прямо соотносит с
основными математическими
Рассмотрение результатов, полученных Ж. Пиаже, позволяет сделать ряд существенных выводов применительно к конструированию учебной программы по математике. Прежде всего, фактические данные о формировании интеллекта ребенка с 7 до 11 лет говорят о том, что ему в это время не только не "чужды" свойства объектов, описываемые посредством математических понятий "отношение - структура" но последние сами органически входят в мышление ребенка.
Традиционные задачи
начальной школьной программы по
математике не учитывают этого обстоятельства
Материалы, имеющиеся в современной детской психологии, позволяют положительно оценивать общую идею внедрения в учебные программы таких задач, в основе которого лежали бы понятия об исходных математических структурах. Конечно, на этом пути возникают большие трудности, так как еще нет опыта построения такого учебного предмета. В частности, одна из них связана с определением возрастного "порога", с которого осуществимо обучение по новой программе. Если следовать логике Ж. Пиаже, то, видимо, по этим программам можно учить лишь тогда, когда у детей уже полностью сформировались операторные структуры (с 14 - 15 лет). Но если предположить, что реальное математическое мышление ребенка формируется как раз внутри того процесса, который обозначается Ж. Пиаже как процесс складывания операторных структур, то эти программы можно вводить гораздо раньше (например, с 7 - 8 лет), когда у детей начинают формироваться конкретные операции с высшим уровнем обратимости. В "естественных" условиях, при обучении по традиционным программам формальные операции, возможно, только и складываются к 13 - 15 годам. Но нельзя ли "ускорить" их формирование путем более раннего введения такого учебного материала, усвоение которого требует прямого анализа математических структур?
Представляется, что такие возможности есть. К 7 - 8 годам у детей уже в достаточной мере развит план мыслительных действий, и путем обучения по соответствующей программе, в которой свойства математических структур даны "явно" и детям даются средства их анализа, можно быстрее подвести детей к уровню "формальных" операций, чем в те сроки, в которые это осуществляется при "самостоятельном" открытии этих свойств.
При этом важно учитывать следующее обстоятельство. Есть основания полагать, что особенности мышления на уровне конкретных операций, приуроченном Ж. Пиаже к 7 - 11 годам, сами неразрывно связаны с формами организации обучения, свойственными традиционной начальной школе. Это обучение (и у нас, и за рубежом) ведется на основе предельно эмпирического содержания, зачастую вообще не связанного с понятийным (теоретическим) отношением к объекту. Такое обучение поддерживает и закрепляет у детей мышление, опирающееся на внешние, прямым восприятием уловимые признаки вещей.
Таким образом, в настоящее
время имеются фактические
1.3. Методика работы с логическими задачами на уроках математики в начальной школе
1 Организация форм
работы с логическими задачами
6. Решение задач с
недостающими или лишними
Методики, направленные
на определение степени
Сад (растение, садовник, собака, забор, земля) растение, земля
Река (берег, рыба, тина, рыболов, вода) берег, вода
Куб (углы, чертёж, сторона, камень, дерево) углы, сторона
Чтение (глаза, книга, картина, печать, слово) глаза, печать
Игра (шахматы, игроки, штрафы, правила, наказания) игроки, правила
Лес (лист, яблоня, охотник, дерево, кустарник) дерево, кустарник
Город (автомобиль, здание, толпа, улица, велосипед) здание, улица
Кольцо (диаметр, проба, круглость, печать, алмаз) диаметр, круглость
Пение (звон, голос, искусство, мелодия, аплодисменты) голос, мелодия
Больница (сад, врач, помещение, радио, больные) помещение, больные
Любовь (розы, чувство, человек, город, природа) чувство, человек
Война (аэроплан, пушки, сражения, солдаты, ружья) сражения, солдаты
Спорт (медаль, оркестр, состязание, победа, стадион) стадион, состязание Обработка полученных данных: ученики, которые правильно выполнили задание, очевидно, обладают умением выделять существенное, т.е. способны к абстрагированию. Те, кто допустил ошибки, не умеют выделять существенные и несущественные признаки. Учащимся достаточно предложить из данного перечня по 5 заданий.
Сравнение
Цель: установить уровень развития у учащихся умения сравнивать предметы, понятия. Учащимся предъявляются или называются какие-либо 2 предмета либо понятия.
Например: озеро – река
книга – тетрадь,солнце – луна
лошадь – корова, сани – телега
линейка – треугольник, дождь – снег
Каждый ученик на листе
бумаги должен написать черты сходства
– слева, а справа – черты различия
названных предметов, понятий.
На выполнение задания по одной паре слов
даётся 4 минуты. После этого листки собираются.
Обобщение.
Предлагается два слова. Учащемуся нужно определить, что между ними общего:
дождь – град ,жидкость – газ
нос – глаза, предательство – трусость
сумма – произведение, водохранилище – канал
сказка – былина, школа – учитель
Учащемуся можно предложить 5 пар слов. Время: 3 – 4 минуты.
Классификация
Эта методика также выявляет умение обобщать, строить обобщение на отвлечённом материале.
Инструкция: даны пять слов. Четыре из них объединены общим признаком. Пятое слово к ним не подходит. Найдите это слово.
1) приставка, предлог, суффикс, окончание, корень;
2) треугольник, отрезок, длина, квадрат, круг;
3) дождь, снег, осадки, иней, град;
4) запятая, точка, двоеточие, тире, союз;
5) сложение, умножение, деление, слагаемое, вычитание;
6) дуб, дерево, ольха, тополь, ясень;
7) Василий, Фёдор, Иван, Петров, Семён;
8) молоко, сыр, сметана, мясо, простокваша;
9) секунда, час, год, вечер, неделя;
10) горький, горячий, кислый, солёный, сладкий;
11) футбол, волейбол, хоккей, плавание, баскетбол;
12) тёмный, светлый, голубой, яркий, тусклый;
13) самолёт, пароход, техника, поезд, дирижабль;
14) круг, квадрат, треугольник, трапеция, прямоугольник;
15) смелый, храбрый, решительный, злой, отважный.
Учащимся можно предложить 5 заданий. Время – 3 минуты.
Глава II. Методика использования логических задач на уроках математики в начальной школе
Общее соображение о важности широкого внедрения в школьный урок математики нестандартных логических задач дополним описанием соответствующих методических установок. Ниже рассмотрим методику использования на уроках математики в начальной школе специального типа логических задач, связанных с внедрением в сознание ребенка основных понятий математической логики. Эта методика была разработана ведущим отечественным методистом А.А. Столяром.
Информация о работе Использование логических задач на уроках математики