Использование логических задач на уроках математики

Автор работы: Пользователь скрыл имя, 11 Октября 2013 в 20:45, курсовая работа

Описание работы

Никто не будет спорить с тем, что каждый учитель должен развивать логическое мышление учащихся. Об этом говорится в методической литературе, в объяснительных записках к учебным программам. Однако, как это делать, учитель не всегда знает. Нередко это приводит к тому, что развитие логического мышления в значительной мере идет стихийно, поэтому большинство учащихся, даже старшеклассников, не овладевает начальными приемами логического мышления (анализ, сравнение, синтез, абстрагирование и др.)

Содержание работы

Введение 2
Глава I. Теоретические аспекты использования логических задач на уроках математики в начальной школе……………………………………………..5
1.1 Логико-психологические проблемы начальной математики как учебного предмета 5
1.2 Психологические предпосылки использования нестандартных логических задач на уроке математики в начальной школ9
1.3. Методика работы с логическими задачами на уроках математики в начальной школе…………………………………………………………………..15
Глава II. Методика использования логических задач на уроках математики в начальной школе 14
2.1 Интегрированное обучение и развитие мышления в простой игре 19
2.2 Организация различных форм работы с логическими задачами 29
Заключение ………………………………………………………………………...32
Список используемой литературы……………………………………………….34
Приложение 1……………………………………………………………………...35

Файлы: 1 файл

логические задачи в начальной школе.doc

— 152.50 Кб (Скачать файл)

"Главная задача  обучения математике, причем с  самого начала, с первого класса, - учить рассуждать, учить мыслить", - писал А.А. Столяр ([9], c. 11). Для достижения наилучших результатов в освоении учащимися основ логического мышления и в изучении геометрических фигур А.А. Столяр использовал в своей практике игру с кругами, рассмотрение которой произведено ниже.

Игра с кругами, созданная  на основе известных кругов Эйлера, позволяет обучать классифицирующей деятельности, закладывает понимание логических операций: отрицания - не, конъюнкции - и, дизъюнкции - или. Перечисленные логические операции имеют важнейшее значение, так как различные их комбинации образуют всевозможные и сколь угодно сложные логические структуры. Из функциональных элементов, реализующих логические операции не, и, или, конструируются схемы современных ЭВМ.

К концу дошкольного  возраста у ребенка проявляются  признаки логического мышления. В своих рассуждениях он начинает использовать логические операции и на их основе строить умозаключения. Очень важно в этот период научить ребенка логически мыслить и обосновывать свои суждения.

Для игры с кругами  нужны нарисованные на бумаге один, два или три пересекающихся круга разного цвета, разноцветные обручи и наборы геометрических фигур разных цветов и размеров, карточки с числами и буквами русского алфавита. В принципе необязательно использовать круги, можно работать с любыми замкнутыми плоскими фигурами. В этом случае замкнутые области выделяются на монтажной панели, к примеру, цветными веревочками. Возможна также работа на компьютере со специальной компьютерной программой. Комплексное обучение, сочетающее игры с обручами со всем классом, игру за столом в группе и индивидуальную работу за компьютером, является наиболее эффективным.

Приведем несколько  примеров заданий для игры "Круги". Предлагаемая методика игрового обучения взята из работы ([9]). Она может  использоваться начиная с первого класса.

1. Задачи с  одним кругом

Цель работы над задачами с одним кругом - учить классифицировать предметы по одному признаку, понимать и применять логическую операцию отрицания не.

Игра проводится со всем классом или группой. У учеников в руках наборы квадратов, кругов и треугольников разных цветов и размеров. В центре игровой площадки помещен обруч или на доске нарисован круг.

Учитель:

- Покажите  треугольные фигуры.

- Покажите  красные фигуры.

- Прыгните  и приземлитесь (поставьте мелом  точку) внутри круга.

- Прыгните  и приземлитесь (поставьте мелом  точку) вне круга.

Ученики выборочно выполняют  эти простые задания. Надо быть готовым  к тому, что здесь необязательно  сразу будут правильные результаты. Понятия "внутри" и "вне" у  многих детей в этом возрасте еще не полностью сформированы.

Учитель:

- Положите  внутрь круга треугольные фигуры.

Ученики случайным образом (например, с закрытыми глазами) выбирают по одной геометрической фигуре из своего набора и по очереди помещают их на заданное место. Все дети наблюдают за действиями одноклассников, а в случае ошибки поднимают руку и говорят: "Стоп". Ошибка обсуждается со всей группой.

После того как все  фигуры размещены, учитель задает два  новых вопроса.

Учитель:

- Какие геометрические  фигуры лежат внутри круга?

Ученик:

- Внутри круга  лежат треугольные фигуры.

Этот ответ содержится в самом условии только что  решенной задачи и формулируется обычно без особого труда. Правильного ответа на второй вопрос приходится ждать дольше.

Учитель:

- Какие геометрические  фигуры лежат вне круга?

Правильный ответ ученика:

- Вне круга  лежат нетреугольные фигуры.

Возможные неправильные ответы:

- вне круга лежат большие фигуры (но и внутри круга могут лежать большие фигуры);

- вне круга  лежат красные фигуры (но и внутри круга могут лежать красные фигуры);

- вне круга  лежат квадраты (не описывает все фигуры, лежащие вне круга).

Ответ:

- вне круга лежат квадраты и круги - является правильным, но наша цель в данном случае - охарактеризовать свойство фигур, лежащих вне круга, через свойство фигур внутри круга.

Возможно, потребуется  уточнение к условию задачи:

- Выразите  свойство всех фигур, лежащих вне круга, одним словом.

Очень трудно бывает учителю  удержаться от произнесения правильного  ответа самому. На уроке, проводимом А.А. Столяром, мы удивились, как он умел ждать правильного ответа от детей. Если мы хотим заниматься развитием  логики у детей, а не добиваться механического запоминания, то спешить нельзя.

В дальнейшем в игру вносятся варианты вопросов различной степени  трудности. В частности, можно задавать вопросы на подсчет количества фигур  с определенным признаком.

Эту игру нужно провести в простом варианте 3-5 раз перед переходом к игре с двумя кругами, но возвращаться к ней с более сложными заданиями следует неоднократно.

Примеры заданий.

При выполнении каждого  из этих заданий очень важно не только правильно разложить фигуры или карточки, но и правильно ответить на вопросы:

- Какие геометрические  фигуры (буквы, числа...) лежат внутри круга?

- Какие геометрические  фигуры (буквы, числа...) лежат вне круга?

1. В круг положите все красные фигуры.

Вне круга лежат некрасные  фигуры.

2. В круг положите все круглые фигуры.

Вне круга лежат некруглые  фигуры.

3. В круг положите все некруглые фигуры.

Скорее всего ученики  сразу дадут правильный ответ: "Вне  круга лежат круглые фигуры". Однако возможен и ответ: "Вне  круга лежат НЕ НЕкруглые фигуры". Эта задача помогает ввести и обсудить понятие двойного отрицания.

Игру с кругами можно  использовать и для изучения свойств  чисел, букв, звуков. Вот несколько  таких примеров.

4. В круг положите все числа, большие 5.

Вне круга лежит и  число 5, поэтому ответ "Вне круга лежат числа, меньшие 5" будет неверным.

Правильный ответ: "Вне  круга лежат числа не больше 5".

5. В круг положите все числа, делящиеся на 2 (3, 5...).

Эта задача может быть использована для изучения признаков  делимости чисел.

6. В круг положите все гласные буквы.

Вне круга кроме согласных  букв лежат еще Ь и Ь, поэтому  ответ "Вне круга лежат согласные  буквы" не будет верным.

Правильный ответ: "Вне  круга лежат негласные буквы".

7. В круг положите все буквы, смягчающие согласные.

Не надо думать, что игра с одним кругом содержит только очень простые задания. Попробуйте правильно ответить на вопрос: "Какие фигуры лежат вне круга, если внутри круга лежат фигуры, являющиеся одновременно красными и треугольными?" Сравните свой ответ с ответом в конце статьи.

Если ваши ученики  освоили рассмотренные выше задачи, можно перейти к следующему этапу  игры с более сложными заданиями:

8. В круг положите все числа, делящиеся на 2 и на 3 одновременно.

Вне круга лежат числа, не делящиеся на 2 или не делящиеся на 3.

9. В круг положите все числа, делящиеся на 2 или на 3.

Вне круга лежат числа, не делящиеся ни на 2, ни на 3.

10. В круг положите все геометрические фигуры, которые являются красными или треугольными.

Вне круга лежат геометрические фигуры, являющиеся одновременно некрасными и нетреугольными.

11. В круг положите все гласные буквы, обозначающие один звук.

При работе с небольшими группами или при индивидуальной работе с учащимися за столами, можно  разобрать обратные задачи. В этом случае геометрические фигуры, буквы или числа сначала раскладываются на столе или закрепляются на монтажной панели, а затем ученикам дается задание с помощью веревочки объединить все фигуры, соответствующие одному признаку.

Например:

Учитель:

- Проведите  замкнутую линию так, чтобы внутри были только все треугольники.

Замкнутая линия проводится с помощью тоненькой веревочки  или карандаша.

Далее можно обсуждать  с учениками те же вопросы, что  и приведенные выше в задачах  с кругами. Перед такой игрой  необходимо предварительно изучить и закрепить понятие замкнутой линии. Один из наиболее эффективных способов усвоения этого понятия - работа в графическом редакторе, связанная с заливкой областей. Достаточно один раз испортить свой рисунок из-за заливки незамкнутой области, как это понятие твердо формируется в сознании ребенка.

2. Задачи с  двумя кругами

Цель работы над задачами с двумя кругами - развить умение классифицировать предметы по двум свойствам, понимать и применять логическую операцию конъюнкции, выражаемую союзом и.

У учащихся в руках  тот же раздаточный материал, но теперь они уже будут работать с двумя кругами или обручами разных цветов с пересекающимися  областями.

синий

красный

Перед решением задач  необходимо выполнить ряд упражнений для выявления замкнутых областей, ограниченных проведенными окружностями. Лучше всего такие упражнения проводить на групповых занятиях с использованием обручей.

Учитель:

- Прыгните  и приземлитесь (поставьте мелом  точку) внутри синего, но вне  красного круга.

- Прыгните  и приземлитесь (поставьте мелом точку) внутри красного, но вне синего круга.

- Прыгните  и приземлитесь (поставьте мелом  точку) внутри синего и внутри  красного кругов.

- Прыгните  и приземлитесь (поставьте мелом  точку) вне синего и вне красного  кругов.

Ученики по очереди выполняют задания, наблюдая друг за другом. При выполнении этих упражнений в первый раз ошибки встречаются довольно часто. В случае ошибок важно добиться правильного объяснения от других учеников и понимания этого объяснения всеми учениками.

Учитель:

- Обведите  границу области внутри синего, но вне красного круга.

- Обведите  границу области внутри красного, но вне синего круга.

- Обведите  границу области внутри синего  и внутри красного кругов.

- Обведите  границу области вне синего  и вне красного кругов.

После успешного выполнения подготовительных упражнений можно  приступить к решению задач.

1. В красный круг поместите все красные фигуры, а в синий круг поместите все треугольные фигуры.

Так же как и при  решении задач с одним кругом, ученики случайным образом выбирают по одной геометрической фигуре из своего набора и по очереди помещают их в одну из областей. Все дети наблюдают за действиями одноклассников, а в случае ошибки поднимают руку и говорят: "Стоп". Ошибка обсуждается со всей группой. Если в процессе выполнения задачи кто-то из учеников совершил ошибку, которая осталась незамеченной, то учитель может оставить ее до последнего обсуждения, но при решении первых задач учителю лучше участвовать в игре вместе со всеми и самому произнести: "Стоп". При первом решении задачи полезно также просить каждого ученика объяснить, почему он кладет фигуру именно на это место.

Ученик:

- Красный круг  должен лежать внутри красного  круга, потому что он красный,  но вне синего круга, потому  что он нетреугольный.

- Синий квадрат  должен лежать вне обоих кругов (вне красного - потому что он  некрасный, вне синего - потому  что нетреугольный).

- Красный треугольник  должен лежать внутри обоих  кругов (внутри красного - потому  что он красный, внутри синего - потому что треугольный).

Если дети в процессе первой игры не догадываются, как им поступить, или не могут объяснить  свои действия, то учитель должен помочь им. В дальнейшем они уже не должны испытывать затруднений.

После задачи с расположением  фигур ученики отвечают на четыре вопроса:

Какие фигуры лежат:

- внутри обоих  кругов;

- внутри синего, но вне красного круга;

- внутри красного, но вне синего круга;

- вне обоих  кругов?

Фигуры надо называть, опираясь на два свойства - цвет и  форму.

Учитель:

- Какие фигуры лежат внутри обоих кругов?

Ученик:

- Внутри обоих  кругов лежат все красные треугольные  фигуры.

Учитель:

- Какие фигуры  лежат внутри синего, но вне  красного круга?

Ученик:

- Внутри синего, но вне красного круга лежат  все треугольные некрасные фигуры.

Информация о работе Использование логических задач на уроках математики