Кривые на плоскости

Автор работы: Пользователь скрыл имя, 02 Декабря 2012 в 17:51, реферат

Описание работы

Спирали - плоские кривые линии (рис 1), бесчисленное множество раз обходящие некоторую точку, с каждым обходом приближаясь к ней или с каждым обходом удаляясь от неё.
Если выбрать точку за полюс полярной системы координат, то полярное уравнение спирали
r = f(j) таково, что f(j + 2p) > f(j) или f(j + 2p) < f(j) при всех j. В частности, спирали получаются, если f(j) — монотонно возрастающая или убывающая положительная функция.

Файлы: 1 файл

Реферат кардиоиды бернули.doc

— 388.00 Кб (Скачать файл)

НИ ИРГТу

 

 

 

 

 

 

 

Реферат

Кривые на плоскости

 

 

 

 

 

                                             

                                                Выполнил:

 студент группы ЭЛбо-12-1

                                                                                        Кохно А.В

 

                                                                         Проверил: преподаватель

                                                        Раджабова О.М.

 

 

 

 

 

 

 

 

 

Иркутск 2012

Спирали

Спирали - плоские кривые линии (рис 1), бесчисленное множество раз обходящие некоторую точку, с каждым обходом приближаясь к ней или с каждым обходом удаляясь от неё.

Если выбрать точку за полюс полярной системы координат, то полярное уравнение спирали

r = f(j) таково, что f(j + 2p) > f(j) или f(j + 2p) < f(j) при всех j. В частности, спирали получаются, если f(j) — монотонно возрастающая или убывающая положительная функция.

Наиболее простой вид имеет уравнение архимедовой спирали: r = аj, изученной древнегреческим математиком Архимедом в связи с задачами трисекции угла и квадратуры круга в сочинении "О спиралях".

Из других спиралей практическое значение имеет спираль Корню (или клотоида), применяемая при графическом решении некоторых задач дифракции. Параметрическое уравнение этой С. имеет вид:


.

 

Спираль Корню (рис. 2) является идеальной переходной кривой для закругления железнодорожного пути, так как её радиус кривизны возрастает пропорционально длине дуги. Спиралями являются также эвольвенты замкнутых кривых, например эвольвента окружности.

Названия некоторым спиралям даны по сходству их полярных уравнений с уравнениями кривых в декартовых координатах, например:

  • параболическая спираль (а - r)2 = bj;
  • гиперболическая спираль: r = а/j;
  • жезл: r2 = a/j;
  • si-ci-cпираль, параметрические уравнения которой имеют вид:

,

si (t) и ci (t) —интегральный синус и интегральный косинус. Кривизна si-ci-cпирали изменяется с длиной дуги по закону показательной функции. Такие спирали применяют в качестве профиля для лекал.

Напоминает спираль кривая , называемая кохлеоидой. Она бесконечное множество раз проходит через полюс, причём каждый следующий завиток лежит в предыдущем.

Спирали встречаются также при рассмотрении особых точек в теории дифференциальных уравнений

Спиралями иногда называют также пространственные кривые, делающие бесконечно много оборотов вокруг некоторой оси, например винтовая линия.

 

Кардиоиды

 

Кардиоида (рис. 3) — плоская линия, которая описывается фиксированной точкой окружности, катящейся по неподвижной окружности с таким же радиусом. Получила своё название из-за схожести своих очертаний со стилизованным изображением сердца.

Кардиоида является частным случаем улитки Паскаля, эпициклоиды и синусоидальной спирали.

Так же можно сказать, что Кардиоида - это плоская кривая, описываемая точкой М окружности, которая извне касается неподвижной окружности того же радиуса и катится по ней без скольжения. Принадлежит к эпициклоидам (плоская кривая, описываемая точкой окружности, которая извне касается неподвижной окружности и катится по ней без скольжения, к ним относятся кардиоиды, циклоиды, гипоциклоиды). Является алгебраической кривой второго порядка.

 

Уравнения кардиоиды:

  • В прямоугольной системе координат:

  • В прямоугольной системе координат (параметрическая запись):

x = 2rcost (1 + cost)

y = 2rsint (1 + cost)

 

  • В полярной системе координат:

  • Длина дуги одного витка кардиоиды, заданной формулой:

равна: s = 8a;

  • Площадь фигуры, ограниченной кардиоидой, заданной формулой:

 равна: 
.

 

Свойства кардиоиды:

1. Касательная в произвольной точке кардиоиды проходит через точку окружности производящего круга, диаметрально противоположной точке касания кругов, а нормаль — через точку их касания;

2. Угол, составляемый касательной к кардиоиде с радиус-вектором точки касания, равен половине угла, образуемого этим радиус-вектором с полярной осью;

3. Касательные к кардиоиде, проведенные в концах хорды, проходящей через полюс, взаимно перпендикулярны.

 

 

 

 

 

 

 

Циклоиды

Циклоида (рис. 4)— плоская трансцендентная кривая. Циклоида определяется кинематически как траектория фиксированной точки производящей окружности радиуса r, катящейся без скольжения по прямой.

Свойства:

  1. Циклоида — периодическая функция по оси абсцисс, с периодом 2πr. За границы периода удобно принять особые точки (точки возврата) вида t = 2πk, где k — произвольное целое число;
  2. Для проведения касательной к циклоиде в произвольной её точке A достаточно соединить эту точку с верхней точкой производящей окружности. Соединив A с нижней точкой производящей окружности, мы получим нормаль;
  3. Длина арки циклоиды равна 8r. Это свойство открыл Кристофер Рен;
  4. Площадь под каждой аркой циклоиды втрое больше, чем площадь порождающего круга. Торричелли сообщил, что этот факт Галилей открыл экспериментально: сравнил вес пластинок с кругом и с аркой циклоиды;
  5. Радиус кривизны у первой арки циклоиды равен ;
  6. «Перевёрнутая» циклоида является кривой скорейшего спуска (брахистохроной). Более того, она имеет также свойство таутохронности: тяжёлое тело, помещённое в любую точку арки циклоиды, достигает горизонтали за одно и то же время;
  7. Период колебаний материальной точки, скользящей по перевёрнутой циклоиде, не зависит от амплитуды, этот факт был использован Гюйгенсом для создания точных механических часов;
  8. Эволюта циклоиды является циклоидой, конгруэнтной исходной, а именно — параллельно сдвинутой так, что вершины переходят в «острия»;
  9. Детали машин, которые совершают одновременно равномерное вращательное и поступательное движение, описывают циклоидальные кривые (циклоида, эпициклоида, гипоциклоида, трохоида, астроида) (ср. построение лемнискаты Бернулли).

Уравнения:

Примем горизонтальную ось координат в качестве прямой, по которой катится производящая окружность радиуса r.

  • Циклоида описывается параметрически:

x = rt − rsint,

y = r − rcost.

  • Уравнение в декартовой прямоугольной системе координат:

 

 

Циклоида может быть получена как решение дифференциального уравнения:

Астроида

 

Астроида (рис. 5)— плоская кривая, описываемая точкой M окружности радиуса r, катящейся по внутренней стороне окружности радиуса R = 4r. Иначе говоря, астроида — это гипоциклоида с модулем m = 4.

Так же можно сказать, что Астроида- это плоская кривая, описываемая точкой окружности, которая касается изнутри неподвижной окружности вчетверо большего радиуса и катится по ней без скольжения. Принадлежит к гипоциклоидам. Является алгебраической кривой шестого порядка.

Свойства:

  1. Имеются четыре каспа;
  2. Длина дуги от точки с 0 до :

  1. Длина всей кривой 6R;
  2. Радиус кривизны:

  1. Астроида является огибающей семейства отрезков постоянной длины, концы которых расположены на двух взаимно перпендикулярных прямых;
  2. Астроида является алгебраической кривой 6-го порядка.

Уравнения:

  • Уравнение в декартовой прямоугольной системе координат:

  • Параметрическое уравнение:

 

 

 

 

 

 

 

Лемниската Бернулли

Лемниската Бернулли (рис. 6)— плоская кривая, геометрическое место точек, произведение расстояний от которых до двух заданных точек (фокусов) постоянно и равно квадрату половины расстояния между фокусами.

Так же можно сказать, что Лемниската Бернулли- это плоская кривая, имеющая вид «восьмерки»; множество точек М, произведение расстояний r1 и r2 которых до двух данных точек F1 и F2 (фокусов) равно квадрату междуфокусного расстояния. Алгебраическая кривая 4-го порядка, рассмотренная Я. Бернулли (1964 г).

Уравнения:

Рассмотрим простейший случай: если расстояние между фокусами 2c, расположены они на оси OX, и начало координат делит отрезок между ними пополам, то следующие уравнения задают лемнискату:

  • в прямоугольной декартовой системе координат:

,

проведя несложные преобразования, можно получить явное уравнение:

  • в полярной системе координат:

плотность точек кривой при равномерном изменении параметра

  • параметрическое уравнение в прямоугольной системе:

, где

Это единственный вариант рациональной параметризации кривой. Уравнение полностью описывает кривую, когда параметр пробегает всю вещественную прямую: от до . При этом, когда параметр стремится к , точка кривой стремится к (0;0) из второй координатной четверти, а когда параметр стремится к , то — из четвёртой. Распределение точек, которые даёт параметрическое уравнение, при изменении его параметра с фиксированным шагом показано на рисунке.

Свойства:

Лемниската Бернулли является частным случаем овала Кассини при a = c, синусоидальной спирали с индексом n = 2 и лемнискаты Бута при c = 0, поэтому она наследует некоторые свойства этих кривых.

Свойства от овала Кассини:

  • Лемниската — кривая четвёртого порядка;
  • Она симметрична относительно двойной точки — середины отрезка между фокусами;
  • Кривая имеет 2 максимума и 2 минимума. Их координаты:

  • Расстояние от максимума до минимума, находящихся по одну сторону от серединного перпендикуляра отрезка между фокусами равно расстоянию от максимума (или от минимума) до двойной точки;
  • Лемнискату описывает окружность радиуса , поэтому иногда в уравнениях производят эту замену.

Свойства от синусоидальной спирали:

  • Точка, где лемниската пересекает саму себя, называется узловой или двойной точкой;
  • Касательные в двойной точке составляют с отрезком F1F2 углы ;
  • Угол μ, составляемый касательной в произвольной точке кривой с радиус-вектором точки касания равен ;
  • Касательные в точках пересечения кривой и хорды, проходящей через двойную точку, параллельны друг другу;
  • Инверсия относительно окружности с центром в двойной точке, переводит лемнискату Бернулли в равнобочную гиперболу;
  • Радиус кривизны лемнискаты есть ;
  • Натуральное уравнение кривой имеет вид

Информация о работе Кривые на плоскости