Автор работы: Пользователь скрыл имя, 12 Ноября 2011 в 17:48, реферат
Процессы принятия решений лежат в основе любой целенаправленной деятельности. В экономике они предшествуют созданию производственных и хозяйственных организаций, обеспечивают их оптимальное функционирование и взаимодействие”. В научных исследованиях – позволяют выделить важнейшие научные проблемы, найти способы их изучения, предопределяют развитие экспериментальной базы и теоретического аппарата. При создании новой техники – составляют важный этап в проектировании машин, устройств, приборов, комплексов, зданий, в разработке технологии их построения и эксплуатации; в социальной сфере – используются для организации функционирования и развития социальных процессов, их координации с хозяйственными и экономическими процессами.
Отметим, что нахождение минимального значения линейной функции при данной системе ограничений отличается от нахождения ее максимального значения при тех же ограничениях лишь тем, что линия уровня передвигается не в направлении вектора а в противоположном направлении. Таким образом, отмеченные выше случаи, встречающиеся при нахождении максимального значения целевой функции, имеют место и при определении ее минимального значения.
Итак, нахождение решения задачи линейного программирования (19) – (21) на основе ее геометрической интерпретации включает следующие этапы:
1. Строят прямые, уравнения которых получаются в результате замены в ограничениях (20) и (21) знаков неравенств на знаки точных равенств.
2.
Находят полуплоскости,
3. Находят многоугольник решений.
4. Строят вектор .
5. Строят прямую , проходящую через многоугольник решений.
6. Передвигают прямую в направлении вектора , в результате чего-либо находят точку (точки), в которой целевая функция принимает максимальное значение, либо устанавливают неограниченность сверху функции на множестве планов.
7. Определяют координаты точки максимума функции и вычисляют значение целевой функции в этой точке.
Пример 7.
Для производства двух видов изделий А и В предприятие использует три вида сырья. Нормы расхода сырья каждого вида на изготовление единицы продукции данного вида приведены в табл. 2. В ней же указаны прибыль от реализации одного изделия каждого вида и общее количество сырья данного вида, которое может быть использовано предприятием.
Таблица 2
Учитывая, что изделия А и В могут производиться в любых соотношениях (сбыт обеспечен), требуется составить такой план их выпуска, при котором прибыль предприятия от реализации всех изделий является максимальной,
Решение. Предположим, что предприятие изготовит x1 изделий вида А и изделий вида В. Поскольку производство продукции ограничено имеющимся в распоряжении предприятия сырьем каждого вида и количество изготовляемых изделий не может быть отрицательным, должны выполняться неравенства
Общая прибыль от реализации x1 изделий вида А и изделий вида В составит
Таким образом, мы приходим к следующей математической задаче: среди всех неотрицательных решений данной системы линейных неравенств требуется найти такое, при котором функция F принимает максимальное значение.
Найдем
решение сформулированной задачи, используя
ее геометрическую интерпретацию. Сначала
определим многоугольник
Эти прямые изображены на рис. 5. Каждая из построенных прямых делит плоскость на две полуплоскости. Координаты точек одной полуплоскости удовлетворяют исходному неравенству, а другой – нет. Чтобы определить искомую полуплоскость, нужно взять какую-нибудь точку, принадлежащую одной из полуплоскостей, и проверить, удовлетворяют ли ее координаты данному неравенству. Если координаты взятой точки удовлетворяют данному неравенству, то искомой является та полуплоскость, которой принадлежит эта точка, в противном случае – другая полуплоскость.
Найдем, например, полуплоскость, определяемую неравенством Для этого, построив прямую (на рис. 5 эта прямая I), возьмем какую-нибудь точку, принадлежащую одной из двух полученных полуплоскостей, например точку О(0; 0). Координаты этой точки удовлетворяют неравенству значит, полуплоскость, которой принадлежит точка О(0; 0), определяется неравенством Это и показано стрелками на рис. 5.
Пересечение полученных полуплоскостей и определяет многоугольник решений данной задачи.
Как видно из рис. 5, многоугольником решений является пятиугольник OABCD. Координаты любой точки, принадлежащей этому пятиугольнику, удовлетворяют данной системе неравенств и условию неотрицательности переменных. Поэтому сформулированная задача будет решена, если мы сможем найти точку, принадлежащую пятиугольнику OABCD, в которой функция F принимает максимальное значение. Чтобы найти указанную точку, построим вектор и прямую где h – некоторая постоянная такая, что прямая имеет общие точки с многоугольником решений. Положим, например, h = 480 и построим прямую (рис. 5).
Если теперь взять какую-нибудь точку, принадлежащую построенной прямой и многоугольнику решений, то ее координаты определяют такой план производства изделий А и В, при котором прибыль от их реализации равна 480 руб. Далее, полагая h равным некоторому числу, большему чем 480, мы будем получать различные параллельные прямые. Если они имеют общие точки с многоугольником решений, то эти точки определяют планы производства изделий А и В, при которых прибыль от их реализации превзойдет 480 руб.
Перемещая построенную прямую в направлении вектора видим, что последней общей точкой ее с многоугольником решений задачи служит точка В. Координаты этой точки и определяют план выпуска изделий А и В, при котором прибыль от их реализации является максимальной.
Найдем координаты точки В как точки пересечения прямых II и III. Следовательно, ее координаты удовлетворяют уравнениям этих прямых
Решив эту систему уравнений, получим Следовательно, если предприятие изготовит 12 изделий вида А и 18 изделий вида В, то оно получит максимальную прибыль, равную
Пример 8.
Найти максимум и минимум функции при условиях
Решение. Построим многоугольник решений. Для этого в неравенствах системы ограничений и условиях неотрицательности переменных знаки неравенств заменим на знаки точных равенств:
Построив полученные прямые, найдем соответствующие полуплоскости и их пересечение (рис. 6).
Как видно из рис. 6, многоугольником решений задачи является треугольник АВС. Координаты точек этого треугольника удовлетворяют условию неотрицательности и неравенствам системы ограничений задачи. Следовательно, задача будет решена, если среди точек треугольника АВС найти такие, в которых функция принимает максимальное и минимальное значения. Для нахождения этих точек построим прямую (число 4 взято произвольно) и вектор
Передвигая данную прямую параллельно самой себе в направлении вектора видим, что ее последней общей точкой с многоугольником решений задачи является точка С. Следовательно, в этой точке функция F принимает максимальное значение. Так как С – точка пересечения прямых I и II, то ее координаты удовлетворяют уравнениям этих прямых:
Решив эту систему уравнений, получим Таким образом, максимальное значение функции
Для нахождения минимального значения целевой функции задачи передвигаем прямую в направлении, противоположном направлению вектора В этом случае, как видно из рис. 6, последней общей точкой прямой с многоугольником решений задачи является точка А. Следовательно, в этой точке функция F принимает минимальное значение. Для определения координат точки А решаем систему уравнений
откуда Подставляя найденные значения переменных в целевую функцию, получим
СИМПЛЕКС-МЕТОД.
Решение любой задачи линейного программирования можно найти симплексным методом. Прежде чем применять указанный метод, следует записать исходную задачу в форме основной задачи линейного программирования, если она не имеет такой формы записи.
Симплексный метод решения задачи линейного программирования основан на переходе от одного опорного плана к другому, при котором значение целевой функции возрастает (при условии, что данная задача имеет оптимальный план и каждый ее опорный план является невырожденным). Указанный переход возможен, если известен какой-нибудь исходный опорный план. Рассмотрим задачу, для которой этот план можно непосредственно записать.
Пусть требуется найти максимальное значение функции
при условиях
Здесь и – заданные постоянные числа
Векторная форма данной задачи имеет следующий вид: найти максимум функции
(22)
при условиях
(23)
(24)
где
Так как
то по определению опорного плана является опорным планом данной задачи (последние компонент вектора Х равны нулю). Этот план определяется системой единичных векторов которые образуют базис m-мерного пространства. Поэтому каждый из векторов а также вектор могут быть представлены в виде линейной комбинации векторов данного базиса. Пусть
Положим Так как векторы – единичные, то и а
Теорема 5
(признак оптимальности опорного плана). Опорный план задачи (22) – (24) является оптимальным, если для любого j
Теорема 6.
Если для некоторого j=k и среди чисел нет положительных , то целевая функция (22) задачи (22) – (24) не ограничена на множестве ее планов.
Теорема 7.
Если опорный план Х задачи (22) – (24) невырожден и , но среди чисел есть положительные (не все ), то существует опорный план X' такой, что
Сформулированные теоремы позволяют проверить, является ли найденный опорный план оптимальным, и выявить целесообразность перехода к новому опорному плану.
Исследование опорного плана на оптимальность, а также дальнейший вычислительный процесс удобнее вести, если условия задачи и первоначальные данные, полученные после определения исходного опорного плана, записать так, как показано в табл. 3.
В столбце С6 этой таблицы записывают коэффициенты при неизвестных целевой функции, имеющие те же индексы, что и векторы данного базиса.
В столбце записывают положительные компоненты исходного опорного плана, в нем же в результате вычислений получают положительные компоненты оптимального плана. Столбцы векторов представляют собой коэффициенты разложения этих векторов по векторам данного базиса.
В табл. 3 первые m строк определяются исходными данными задачи, а показатели (m+1)-й строки вычисляют. В этой строке в столбце вектора записывают значение целевой функции, которое она принимает при данном опорном плане, а в столбце вектора – значение
Значение Zj находится как скалярное произведение вектора на вектор
Значение равно скалярному произведению вектора P0 на вектор :
После заполнения таблицы 3 исходный опорный план проверяют на оптимальность. Для этого просматривают элементы -й строки таблицы. В результате может иметь место один из следующих трех случаев: