Автор работы: Пользователь скрыл имя, 12 Ноября 2011 в 17:48, реферат
Процессы принятия решений лежат в основе любой целенаправленной деятельности. В экономике они предшествуют созданию производственных и хозяйственных организаций, обеспечивают их оптимальное функционирование и взаимодействие”. В научных исследованиях – позволяют выделить важнейшие научные проблемы, найти способы их изучения, предопределяют развитие экспериментальной базы и теоретического аппарата. При создании новой техники – составляют важный этап в проектировании машин, устройств, приборов, комплексов, зданий, в разработке технологии их построения и эксплуатации; в социальной сфере – используются для организации функционирования и развития социальных процессов, их координации с хозяйственными и экономическими процессами.
Следовательно, вектор Р5 подлежит исключению из базиса. Столбец вектора Р3 к 2-я строка являются направляющими. Составляем таблицу для II итерации (табл. 7).
Таблица 7
Сначала заполняем строку вектора, вновь введенного в базис, т. е. строку, номер которой совпадает с номером направляющей строки. Здесь направляющей является 2-я строка. Элементы этой строки табл. 7 получаются из соответствующих элементов таблицы 6 делением их на разрешающий элемент (т. е. на 8). При этом в столбце Сб записываем коэффициент , стоящий в столбце вводимого в базис вектора . Затем заполняем элементы столбцов для векторов, входящих в новый базис. В этих столбцах на пересечении строк и столбцов одноименных векторов проставляем единицы, а все остальные элементы полагаем равными нулю.
Для
определения остальных
Вычислим элементы табл. 7, стоящие в столбце вектора Р0. Первый из них находится в 1-й строке этого столбца. Для его вычисления находим три числа:
1) число, стоящее в табл. 6 на пересечении столбца вектора Р0 и 1-й строки (360);
2) число, стоящее в табл. 6 на пересечении столбца вектора P3 и 1-й строки (12);
3) число, стоящее в табл. 7 на пересечении столбца вектора Р0 и 2-й строки (24).
Вычитая из первого числа произведение двух других, находим искомый элемент: 360 – 12 х 24=72; записываем его в 1-й строке столбца вектора Р0 табл. 7.
Второй элемент столбца вектора Р0 табл. 7 был уже вычислен ранее. Для вычисления третьего элемента столбца вектора Р0 также находим три числа. Первое из них (180) находится на пересечении 3-й строки и столбца вектора Р0 табл. 6, второе (3) – на пересечении 3-й строки и столбца вектора P3 табл. 6, третье (24) – на пересечении 2-й строки и столбца вектора Р0 табл. 8. Итак, указанный элемент есть 180 – 24 х 3=108. Число 108 записываем в 3-й строке столбца вектора Р0 табл. 7.
Значение F0 в 4-й строке столбца этого же вектора можно найти двумя способами:
1) по формуле , т.е.
2) по правилу треугольника; в данном случае треугольник образован числами 0, -16, 24. Этот способ приводит к тому же результату: 0 - (-16) х 24=384.
При определении по правилу треугольника элементов столбца вектора Р0 третье число, стоящее в нижней вершине треугольника, все время оставалось неизменным и менялись лишь первые два числа. Учтем это при нахождении элементов столбца вектора P1 табл. 7. Для вычисления указанных элементов первые два числа берем из столбцов векторов P1 и Р3 табл. 6, а третье число – из табл. 7. Это число стоит на пересечении 2-й строки и столбца вектора P1 последней таблицы. В результате получаем значения искомых элементов: 18 – 12 х (3/4) =9; 5 – 3 х (3/4) = 11/4.
Число в 4-й строке столбца вектора P1 табл. 7 можно найти двумя способами:
1) по формуле Z1-С1=(C,P1)-C1 имеем
2)
по правилу треугольника
Аналогично находим элементы столбца вектора P2.
Элементы столбца вектора Р5 вычисляем по правилу треугольника. Однако построенные для определения этих элементов треугольники выглядят иначе.
При вычислении элемента 1-й строки указанного столбца получается треугольник, образованный числами 0,12 и 1/8. Следовательно, искомый элемент равен 0 – 12 х (1/8) = -3/2. Элемент, стоящий в 3-й строке данного столбца, равен 0 - 3 х (1 /8) = -3/8.
По окончании расчета всех элементов табл. 7 в ней получены новый опорный план и коэффициенты разложения векторов через базисные векторы P4, P3, P6 и значения и . Как видно из этой таблицы, новым опорным планом задачи является план X=(0; 0; 24; 72; 0; 108). При данном плане производства изготовляется 24 изделия С и остается неиспользованным 72 кг сырья 1 вида и 108 кг сырья III вида. Стоимость всей производимой при этом плане продукции равна 384 руб. Указанные числа записаны в столбце вектора Р0 табл. 7. Как видно, данные этого столбца по-прежнему представляют собой параметры рассматриваемой задачи, хотя они претерпели значительные изменения. Изменились данные и других столбцов, а их экономическое содержание стало более сложным. Так, например, возьмем данные столбца вектора Р2. Число 1/2 во 2-й строке этого столбца показывает, на сколько следует уменьшить изготовление изделий С, если запланировать выпуск одного изделия В. Числа 9 и 3/2 в 1-й и 3-й строках вектора P2 показывают соответственно, сколько потребуется сырья I и II вида при включении в план производства одного изделия В, а число – 2 в 4-й строке показывает, что если будет запланирован выпуск одного изделия В, то это обеспечит увеличение выпуска продукции в стоимостном выражении на 2 руб. Иными словами, если включить в план производства продукции одно изделие В, то это потребует уменьшения выпуска изделия С на 1/2 ед. и потребует дополнительных затрат 9 кг сырья I вида и 3/2 кг сырья III вида, а общая стоимость изготовляемой продукции в соответствии с новым оптимальным планом возрастет на 2 руб. Таким образом, числа 9 и 3/2 выступают как бы новыми “нормами” затрат сырья I и III вида на изготовление одного изделия В (как видно из табл. 6, ранее они были равны 15 и 3), что объясняется уменьшением выпуска изделий С.
Такой же экономический смысл имеют и данные столбца вектора Р1 табл. 7. Несколько иное экономическое содержание имеют числа, записанные в столбце вектора Р5. Число 1/8 во 2-й строке этого столбца, показывает, что увеличение объемов сырья II вида на 1 кг позволило бы увеличить выпуск изделий С на 1/8 ед. Одновременно потребовалось бы дополнительно 3/2 кг сырья I вида и 3/8 кг сырья III вида. Увеличение выпуска изделий С на 1/8 ед. приведет к росту выпуска продукции на 2 руб.
Из изложенного выше экономического содержания данных табл. 7 следует, что найденный на II итерации план задачи не является оптимальным. Это видно и из 4-й строки табл. 7, поскольку в столбце вектора P2 этой строки стоит отрицательное число – 2. Значит, в базис следует ввести вектор P2, т. е. в новом плане следует предусмотреть выпуск изделий В. При определении возможного числа изготовления изделий В следует учитывать имеющееся количество сырья каждого вида, а именно: возможный выпуск изделий В определяется для , т. е. находим
Следовательно, исключению из базиса подлежит вектор Р4 иными словами, выпуск изделий В ограничен имеющимся в распоряжении предприятия сырьем I вида. С учетом имеющихся объемов этого сырья предприятию следует изготовить 8 изделий В. Число 9 является разрешающим элементом, а столбец вектора P2 и 1-я строка табл. 7 являются направляющими. Составляем таблицу для III итерации (табл. 8).
Таблица 8
В табл. 8 сначала заполняем элементы 1-й строки, которая представляет собой строку вновь вводимого в базис вектора Р2. Элементы этой строки получаем из элементов 1-й строки табл. 7 делением последних на разрешающий элемент (т.е. на 9). При этом в столбце Сб данной строки записываем .
Затем заполняем элементы столбцов векторов базиса и по правилу треугольника вычисляем элементы остальных столбцов. В результате в табл. 8 получаем новый опорный план X=(0; 8; 20; 0; 0; 96) и коэффициенты разложения векторов через базисные векторы и соответствующие значения и
Проверяем, является ли данный опорный план оптимальным или нет. Для этого рассмотрим 4-ю строку, табл. 8. В этой строке среди чисел нет отрицательных. Это означает, что найденный опорный план является оптимальным и
Следовательно, план выпуска продукции, включающий изготовление 8 изделий В и 20 изделий С, является оптимальным. При данном плане выпуска изделий полностью используется сырье I и II видов и остается неиспользованным 96 кг сырья III вида, а стоимость производимой продукции равна 400 руб.
Оптимальным планом производства продукции не предусматривается изготовление изделий А. Введение в план выпуска продукции изделий вида А привело бы к уменьшению указанной общей стоимости. Это видно из 4-й строки столбца вектора P1, где число 5 показывает, что при данном плане включение в него выпуска единицы изделия А приводит лишь к уменьшению общей величины стоимости на 5 руб.
Решение
данного примера симплексным
методом можно было бы проводить,
используя лишь одну таблицу (табл. 9).
В этой таблице последовательно записаны
одна за другой все три итерации вычислительного
процесса.
Таблица 9
Пример 10.
Найти максимум функции при условиях
Решение. Систему уравнений задачи запишем в векторной форме:
где
Так как среди векторов имеется три единичных вектора, то для данной задачи можно непосредственно найти опорный план. Таковым является план Х=(0, 0, 20, 24; 0; 18). Составляем симплексную таблицу (табл. 10) и проверяем, является ли данный опорный план оптимальным.
Таблица 10
Как видно из табл. 10, исходный опорный план не является оптимальным. Поэтому переходим к новому опорному плану. Это можно сделать, так как в столбцах векторов P1 и p5, 4-я строка которых содержит отрицательные числа, имеются положительные элементы. Для перехода к новому опорному плану введем в базис вектор p5 и исключим из базиса вектор p4. Составляем таблицу II итерации.
Таблица 11
Как
видно из табл. 11, новый опорный план
задачи не является оптимальным, так как
в 4-й строке столбца вектора P1
стоит отрицательное число -11/3. Поскольку
в столбце этого вектора нет положительных
элементов, данная задача не имеет оптимального
плана.
ПРЯМАЯ И ДВОЙСТВЕННАЯ ЗЛП.
Каждой задаче линейного программирования можно определенным образом сопоставить некоторую другую задачу (линейного программирования), называемую двойственной или сопряженной по отношению к исходной или прямой задаче. Дадим определение двойственной задачи по отношению к общей задаче линейного программирования, состоящей, как мы уже знаем, в нахождении максимального значения функции
(32)
при условиях
(33)
(34)
Определение 13.
Задача, состоящая в нахождении минимального значения функции
(35)
при условиях
(36)
(37)
называется двойственной по отношению к задаче (32) – (34). Задачи (32) – (34) и (35) – (37) образуют пару задач, называемую в линейном программировании двойственной парой. Сравнивая две сформулированные задачи, видим, что двойственная задача составляется согласно следующим правилам:
1.
Целевая функция исходной
2. Матрица
(38)
составленная из коэффициентов при неизвестных в системе ограничений (33) исходной задачи (32) – (34), и аналогичная матрица
(39)
в двойственной задаче (35) – (37) получаются друг из друга транспонированием (т. е. заменой строк столбцами, а столбцов – строками).
3.
Число переменных в
4.
Коэффициентами при