Математические методы по "Психологии"

Автор работы: Пользователь скрыл имя, 27 Февраля 2014 в 17:32, лекция

Описание работы

Корреляционный анализ (от лат. «соотношение», «связь») применяется для проверки гипотезы о статистической зависимости значений двух или нескольких переменных в том случае, если исследователь может их регистрировать (измерять), но не контролировать (изменять).(2). Задача корреляционного анализа сводится к установлению направления (положительное или отрицательное) и формы (линейная, нелинейная) связи между варьирующими признаками, измерению ее тесноты, и, наконец, к проверке уровня значимости полученных коэффициентов корреляции. Графики корреляционных зависимостей строят по уравнениям следующих функций: Yx= F(X) или Xy = F(Y),(формула 1), которые называются уравнениями регрессии. Здесь Yx и Xy так называемые условные средние арифметические переменных Y и X.

Файлы: 1 файл

хилько картотека.docx

— 128.84 Кб (Скачать файл)

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ. Корреляционный анализ (от лат. «соотношение», «связь») применяется для проверки гипотезы о статистической зависимости значений двух или нескольких переменных в том случае, если исследователь может их регистрировать (измерять), но не контролировать (изменять).(2). Задача корреляционного анализа сводится к установлению направления (положительное или отрицательное) и формы (линейная, нелинейная) связи между варьирующими признаками, измерению ее тесноты, и, наконец, к проверке уровня значимости полученных коэффициентов корреляции.

Графики корреляционных зависимостей строят по уравнениям следующих функций: 
Yx= F(X) или Xy = F(Y),(формула 1), которые называются уравнениями регрессии. Здесь Yx и Xy так называемые условные средние арифметические переменных Y и X.

Переменные X и Y могут быть измерены в разных шкалах, именно это определяет выбор соответствующего коэффициента корреляции. Представим соотношения между типами шкал, в которых могут быть измерены переменные X и Y и соответствующими мерами связи в виде таблицы:

 

Тип шкалы

Мера связи

Переменная X

Переменная Y

 

Интервальная или отношений

Интервальная или отношений

Коэффициент Пирсона rxy

Ранговая, интервальная или отношений

Ранговая, интервальная или отношений

Коэффициент Спирмена ρxy

Ранговая

Ранговая

Коэффициент Кендалла τ

Дихотомическая

Дихотомическая

Коэффициент φ

Дихотомическая

Ранговая,

Рангово-бисериальный Rrb

Дихотомическая

Интервальная или отношений

Бисериальный Rбис

Интервальная

Ранговая

Не разработан


 

3.1 Коэффициент корреляции  Пирсона

 

Формула расчета коэффициента корреляции построена таким образом, что, если связь между признаками имеет линейный характер, коэффициент Пирсона точно устанавливает тесноту этой связи. Поэтому он называется также коэффициентом линейной корреляции Пирсона. Если же связь между переменными X и Y не линейна, то Пирсон предложил для оценки тесноты этой связи так называемое корреляционное отношение.

Величина коэффициента линейной корреляции Пирсона не может превышать +1 и быть меньше чем -1. Эти два числа +1 и -1 — являются границами для коэффициента корреляции. Когда при расчете получается величина большая +1 или меньшая -1 — следовательно произошла ошибка в вычислениях.

Если коэффициент корреляции по модулю оказывается близким к 1, то это соответствует высокому уровню связи между переменными. Так, в частности, при корреляции переменной величины с самой собой величина коэффициента корреляции будет равна +1. Подобная связь характеризует прямо пропорциональную зависимость. Если же значения переменной Х будут распложены в порядке возрастания, а те же значения (обозначенные теперь уже как переменная Y) будут располагаться в порядке убывания, то в этом случае корреляция между переменными X и Y будет равна точно -1. Такая величина коэффициента корреляции характеризует обратно пропорциональную зависимость.

Знак коэффициента корреляции очень важен для интерпретации полученной связи. Подчеркнем еще раз, что если знак коэффициента линейной корреляции — плюс, то связь между коррелирующими признаками такова, что большей величине одного признака (переменной) соответствует большая величина другого признака (другой переменной). Иными словами, если один показатель (переменная) увеличивается, то соответственно увеличивается и другой показатель (переменная). Такая зависимость носит название прямо пропорциональной зависимости.

Если же получен знак минус, то большей величине одного признака соответствует меньшая величина другого. Иначе говоря, при наличии знака минус, увеличению одной переменной (признака, значения) соответствует уменьшение другой переменной. Такая зависимость носит название обратно пропорциональной зависимости. При этом выбор переменной, которой приписывается характер (тенденция) возрастания — произволен. Это может быть как переменная X так и переменная Y. Однако если психолог будет считать, что увеличивается переменная X, то переменная Y будет соответственно уменьшаться, и наоборот. Эти положения очень важно четко усвоить для правильной интерпретации полученной корреляционной зависимости.

В общем виде формула для подсчета коэффициента корреляции такова (формула 2):

где хi — значения, принимаемые переменной X,

yi - значения, принимаемые переменной Y;

x — средняя по X,

у — средняя по Y.

Расчет коэффициента корреляции Пирсона предполагает, что переменные X и Y распределены нормально.

Для применения коэффициента корреляции Пирсона, необходимо соблюдать следующие условия:

1. Сравниваемые переменные  должны быть получены в интервальной  шкале или шкале отношений.

2. Распределения переменных X и Y должны быть близки к нормальному.

3. Число варьирующих признаков  в сравниваемых переменных X и Y должно  быть одинаковым.

4. Таблицы уровней значимости  для коэффициента корреляции  Пирсона рассчитаны от n = 5 до n = 1000. Оценка уровня значимости по таблицам осуществляется при числе степеней свободы k = n - 2.

 

Коэффициент корреляции рангов Спирмена. Коэффициент корреляции рангов, предложенный К. Спирменом, относится к непараметрическим показателям связи между переменными, измеренными в ранговой шкале. При расчете этого коэффициента не требуется никаких предположений о характере распределений признаков в генеральной совокупности. Этот коэффициент определяет степень тесноты связи порядковых признаков, которые в этом случае представляют собой ранги сравниваемых величин. Правила ранжирования варьирующих величин были описаны выше.

Величина коэффициента линейной корреляции Спирмена также лежит в интервале +1 и -1. Он, как и коэффициент Пирсона, может быть положительным и отрицательным, характеризуя направленность связи между двумя признаками, измеренными в ранговой шкале.

В принципе число ранжируемых признаков (качеств, черт и т.п.) может быть любым, но сам процесс ранжирования большего чем 20 числа признаков — затруднителен. Возможно, что именно поэтому таблица критических значений рангового коэффициента корреляции рассчитана лишь для сорока ранжируемых признаков (n < 40, таблица 21 Приложения 1). В случае использования большего чем 40 числа ранжируемых признаков, уровень значимости коэффициента корреляции следует находить по таблице для коэффициента корреляции Пирсона.

Ранговый коэффициент линейной корреляции Спирмена подсчитывается по формуле (формула 3):

где n — количество ранжируемых признаков (показателей, испытуемых)

D —разность между рангами  по двум переменным для каждого  испытуемого

∑(D2) — сумма квадратов разностей рангов.

 

Случай одинаковых (равных) рангов. При наличии одинаковых рангов формула расчета коэффициента линейной корреляции Спирмена будет несколько иной. В этом случае в формулу вычисления коэффициентов корреляции добавляются два новых члена, учитывающие одинаковые ранги. Они называются поправками на одинаковые ранги и добавляются в числитель расчетной формулы.

(формула 4.1)

(формула 4.2)

где n — число одинаковых рангов в первом столбце,

k — число одинаковых рангов во втором столбце.

Если имеется две группы одинаковых рангов в каком либо столбце то формула поправки несколько усложняется:

(формула 4.3)

 

где n — число одинаковых рангов в первой группе ранжируемого столбца,

k – число одинаковых рангов в второй группе ранжируемого столбца. Модификация формулы в общем случае такова (формула 4.4):

Для применения коэффициента корреляции Спирмена, необходимо соблюдать следующие условия:

1. Сравниваемые переменные  должны быть получены в порядковой (ранговой) шкале, но могут быть  измерены также в шкале интервалов  и отношений.

2. Характер распределения  коррелируемых величин не имеет значения.

3. Число варьирующих признаков  в сравниваемых переменных X и Y должно  быть одинаковым.

4. Таблицы для определения  критических значений коэффициента  корреляции Спирмена рассчитаны от числа признаков равных n = 5 до n = 40 и при большем числе сравниваемых переменных следует использовать таблицу для пирсоновского коэффициента корреляции . Нахождение критических значений осуществляется при k = n.

 

Расчет уровней значимости коэффициентов корреляции. Все коэффициенты корреляции, которые будут рассмотрены ниже, не имеют стандартных таблиц для нахождения критических значений. В этих случаях поиск критических значений осуществляется с помощью t-критерия Стьюдента по формуле (формула 5):

где rэмп — коэффициент корреляции,

n— число коррелируемых признаков, а величина Тф проверяется на уровень значимости по таблице для t-критерия Стьюдента. Число степеней свободы в этом случае будет равно k = n — 2.

Однако с помощью формулы можно проводить оценку уровней значимости и коэффициентов корреляции Пирсона и Спирмена.

 

Коэффициент корреляции «φ». При сравнении двух переменных, измеренных в дихотомической шкале, мерой корреляционной связи служит так называемый коэффициент «φ», или, как назвал эту статистику ее автор К. Пирсон, — «коэффициент ассоциации».

Величина коэффициента «φ»лежит в интервале +1 и -1. Он может быть как положительным, так и отрицательным, характеризуя направление связи двух дихотомически измеренных признаков.

В общем виде формула вычисления коэффициента корреляции «φ» выглядит так (формула 6):

где рх — частота или доля признака, имеющего 1 по X,

(1 - рх) — доля или частота признака, имеющего 0 по X;

ру — частота или доля признака, имеющего 1 по Y,

(1 - ру) — доля или частота признака, имеющего 0 по Y,

рху — доля или частота признака, имеющая 1 одновременно как по X, так и по Y.

Частоты вычисляется следующим образом: подсчитывается количество 1 в переменной Х и полученная величина делится на общее число элементов этой переменной — N. Аналогично подсчитываются частоты для переменной Y. Обозначение рху — соответствует частоте или доле признаков, имеющих единицу как по Х так и по Y.

Второй способ вычисления коэффициента «φ»

Коэффициент «φ» можно вычислить, не применяя метод кодирования. В этом случае используется так называемая четырехпольная таблица, или таблица сопряженности. Каждую клетку таблицы обозначим соответствующими буквами а, b, с и d.

Приведем общую формулу расчета коэффициента «φ» по таблице сопряженности (формула 7):

Для применения коэффициента корреляции «φ» необходимо соблюдать следующие условия:

1. Сравниваемые признаки  должны быть измерены в дихотомической  шкале.

2. Число варьирующих признаков  в сравниваемых переменных Х  и Y должно быть одинаковым.

3. Для оценки уровня  достоверности коэффициента «φ»  следует пользоваться формулой (5) и таблицей критических значений  для t-критерия Стьюдента при k = n - 2.

 

Коэффициент корреляции «τ» Кендалла. Коэффициент корреляции «τ» (тау) Кендалла относится к числу непараметрических, т.е. при вычислении этого коэффициента не играет роли характер распределения сравниваемых переменных. Коэффициент «τ» предназначен для работы с данными, полученными в ранговой шкале. Иногда этот коэффициент можно использовать вместо коэффициента корреляции Спирмена, поскольку способ его вычисления более прост. Он основан на вычислении суммы инверсий и совпадений.

Для применения коэффициента корреляции «т» Кендалла необходимо соблюдать следующие условия:

1. Сравниваемые признаки  должны быть измерены в порядковой  шкале.

2. Число варьирующих признаков  в сравниваемых переменных Х  и Y должно быть одинаковым.

3. Величина «τ» Кендалла независима от закона распределения величин Х и Y.

Информация о работе Математические методы по "Психологии"