Математические методы по "Психологии"

Автор работы: Пользователь скрыл имя, 27 Февраля 2014 в 17:32, лекция

Описание работы

Корреляционный анализ (от лат. «соотношение», «связь») применяется для проверки гипотезы о статистической зависимости значений двух или нескольких переменных в том случае, если исследователь может их регистрировать (измерять), но не контролировать (изменять).(2). Задача корреляционного анализа сводится к установлению направления (положительное или отрицательное) и формы (линейная, нелинейная) связи между варьирующими признаками, измерению ее тесноты, и, наконец, к проверке уровня значимости полученных коэффициентов корреляции. Графики корреляционных зависимостей строят по уравнениям следующих функций: Yx= F(X) или Xy = F(Y),(формула 1), которые называются уравнениями регрессии. Здесь Yx и Xy так называемые условные средние арифметические переменных Y и X.

Файлы: 1 файл

хилько картотека.docx

— 128.84 Кб (Скачать файл)

4. При расчетах этого  коэффициента не допускается  использование одинаковых рангов.

5. Для оценки уровня  достоверности коэффициента «τ»  следует пользоваться формулой (5) и таблицей критических значений  для t-критерия Стьюдента при k= n -1.

3.7 Бисериальный коэффициент корреляции

 

В тех случаях, когда одна переменная измеряется в дихотомической шкале (переменная X), а другая в шкале интервалов или отношений (переменная Y), используется бисериальный коэффициент корреляции. Мы помним, что переменная X, полученная в дихотомической шкале, принимает только два значения (кода) 0 и 1. Особо подчеркнем, что несмотря на то, что этот коэффициент изменяется в диапазоне от - 1 до + 1 его знак для интерпретации результатов не имеет значения. Это исключение из общего правила.

Расчет этого коэффициента производится по формуле (формула 8):

где Х1 среднее по тем элементам переменной Y, которым соответствует код (признак) 1 в переменной X. Здесь n1 — количество единичек в переменной X.

Х0 среднее по тем элементам переменной Y, которым соответствует код (признак) 0 в переменной X. Здесь n0 — количество нулей в переменной X.

N = n1 + n0 — общее количество  элементов в переменной X.

Sy— стандартное отклонение переменной Y, вычисляемое по формуле

Значимость бисериального коэффциента корреляции оценивается по величине Тф t-критерия Стьюдента с числом степеней свободы k = n - 2.

Для применения бисериального коэффициента корреляции необходимо соблюдать следующие условия:

1. Сравниваемые переменные  должны быть измерены в разных  шкалах: одна Х — в дихотомической  шкале; другая Y—в шкале интервалов  или отношений.

2. Предполагается, что переменная Y имеет нормальный закон распределения.

3. Число варьирующих признаков  в сравниваемых переменных Х  и Y должно быть одинаковым.

4. Для оценки уровня  достоверности бисериального коэффициента корреляции следует пользоваться формулой (5) и таблицей критических значений для t-критерия Стьюдента при k = n - 2.

 
Рангово-бисериальный коэффициент корреляции. В тех случаях, когда одна переменная измеряется в дихотомической шкале (переменная X), а другая в ранговой шкале (переменная Y), используется рангово-бисериальный коэффициент корреляции. Мы помним, что переменная X, измеренная в дихотомической шкале, принимает только два значения (кода) 0 и 1. Особо подчеркнем: несмотря на то что этот коэффициент изменяется в диапазоне от -1 до +1, его знак для интерпретации результатов не имеет значения. Это еще одно исключение из общего правила.

Расчет этого коэффициента производится по формуле:

где Х1 — средний ранг по тем элементам переменной Y, которым соответствует код (признак) 1 в переменной X;

Для применения рангово-бисериального коэффициента корреляции необходимо соблюдать следующие условия:

1. Сравниваемые переменные  должны быть измерены в разных  шкалах: одна X— в дихотомической  шкале; другая Y—в ранговой шкале.

2. Число варьирующих признаков  в сравниваемых переменных Х  и Y должно быть одинаковым.

3. Для оценки уровня  достоверности рангово-бисериального коэффициента корреляции следует пользоваться формулой (5) и таблицей критических значений для t-критерия Стьюдента при k = n - 2.

 

Корреляционное отношение Пирсона η. Все рассмотренные выше коэффициенты корреляции служат для выявления только линейной зависимости между признаками. Для измерения нелинейной зависимости К. Пирсон предложил показатель, который он назвал корреляционным отношением. Напомним, что коэффициент корреляции rxy(формула 11.1), который был введен Пирсоном, характеризует связь между переменными Х и Y с точки зрения прямой или обратной пропорциональности, иными словами, получаемая связь между переменными является согласованной и такой, что с увеличением одной переменной другая (в среднем) либо только увеличивается, либо только уменьшается (в среднем). При этом в первом случае получается положительный коэффициент корреляции, во втором отрицательный.

Корреляционное отношение описывает искомую связь, условно говоря, с двух сторон: со стороны переменной Х по отношению к Y, и со стороны переменной Y по отношению к X. Соответственно этому корреляционное отношение представляет собой два показателя, обозначаемые как hyx и hxy. Они вычисляются отдельно друг от друга. Однако они связаны между собой, поскольку при строго линейной зависимости между переменными Х и Y имеет место равенство hyx = hxy В этом случае величины обоих показателей корреляционного отношения совпадают с величиной коэффициента корреляции Пирсона.

Показатели корреляционного отношения вычисляются по следующим двум формулам:

(формула 10.1)

(формула 10.2)

здесь х и у общие, а хy и уx — групповые средние арифметические, fy и fx частоты рядов X и Y. Согласно этим формулам оба показателя всегда положительны и располагаются в интервале от 0 до +1.

Подчеркнем, что, как правило, hyx ≠ hxy. Равенство между этими коэффициентами возможно лишь при наличии строго линейной связи между коррелируемыми переменными. Именно поэтому различие между hyx и hxy убудет означать наличие не линейной, а связи более сложного типа между коррелируемыми признаками.

Для вычисления корреляционного соотношения hyx (Y по X) или hxy (X по Y) необходимо выполнить следующие действия:

1) расположить по порядку  исходные данные по Х от  меньшей величины к большей, при  этом сохранив значения соответствующих  величин У по отношению к Х;

2) определить частоты переменной  Х — обозначение fx;

3) подсчитать арифметические (частные) средние по переменной Y для соответствующей частоты  fx — обозначение уx ;

4) найти варианты (неповторяющиеся  значения) величины Х — обозначение  хi;

5) расположить по порядку  исходные данные по Y от меньшей  величины к большей, при этом сохранив значения соответствующих величин Х по отношению к Y;

6) определить частоты переменной Y— обозначение fy;

7) подсчитать арифметические (частные) средние по переменной  Х для соответствующей частоты  fy — обозначение хy;

8) найти варианты (неповторяющиеся  значения) переменной Y — обозначение  yi;

9) определить общие средние  по переменной Х и Y обозначение  x и у ;

10) произвести расчет по  формулам (10.1) и (10.2);

11) определить уровень  значимости полученных показателей  корреляционного отношения но таблице критических значений для t-критерия Стьюдента при k = n — 2.

Разумеется, корреляционное отношение Пирсона не дает возможности установить характер выявленной зависимости — она может быть параболической, кубической, логарифмической и др. Из результатов анализа ясно только одно: связь между переменными Х и Y носит нелинейный характер. Более точно характер связи можно определить с помощью метода регрессионного анализа.

Для применения корреляционного отношения Пирсона необходимо соблюдать следующие условия:

1. Сравниваемые переменные  должны быть измерены в шкале  интервалов или отношений.

2. Предполагается, что обе  переменные имеют нормальный  закон распределения.

3. Число варьирующих признаков  в сравниваемых переменных Х  и У должно быть одинаковым.

4. Для оценки уровня  достоверности корреляционного  отношения Пирсона следует пользоваться  формулой (5) и таблицей критических  значений для t-критерия Стьюдента  при k = n — 2.

 

Множественная корреляция. Наряду с анализом связей между двумя рядами данных можно проводить анализ многомерных корреляционных связей. Наиболее простым случаем нахождения подобной зависимости является вычисление коэффициентов множественной корреляции между тремя переменными X, Y и Z. В соответствии с числом переменных вычисляются три коэффициента множественной корреляции. Собственно говоря, коэффициент множественной корреляции оценивает тесноту линейной связи одной переменной, например X, с двумя остальными, Y и Z, и обозначается как rx(yz) . При оценке тесноты линейной связи переменной Y с переменными Х и Z, коэффициент множественной корреляции обозначается как ry(xz)

Вычисление коэффициентов множественной корреляции базируется на коэффициентах линейной корреляции между переменными Х и Y — rxy, Х и Z, — rxz, У и Z, — ryz. Для вычисления одного из коэффициентов множественной корреляции, например rx(yz) используется следующая формула:

где rxy, rxz, ryz — коэффициенты линейной корреляции между парами переменных Х и Y, Х и Z, Y и Z..

Коэффициент множественной корреляции принимает значения от 0 до 1. Значимость этого коэффициента оценивают по величине t-критерия Стьюдента с числом степеней свободы k = n - 3.

Для применения множественного коэффициента корреляции необходимо соблюдать следующие условия:

1. Сравниваемые переменные  должны быть измерены в шкале  интервалов или отношений.

2. Предполагается, что все  переменные имеют нормальный  закон распределения.

3. Число варьирующих признаков  в сравниваемых переменных должно  быть одинаковым.

4. Для оценки уровня  достоверности корреляционного  отношения Пирсона следует пользоваться  формулой (5) и таблицей критических  значений для t-критерия Стыодента при k = n - 3.

 
Частная корреляция. Название «частная корреляция» был впервые использовано в работе Д. Юла в 1907. Смысл этого понятия иллюстрирует следующий пример. Предположим, что при обработке некоторых данных удалось обнаружить значимую отрицательную корреляцию между длиной волос и ростом (т.е. люди низкого роста обладают более длинными волосами). На первый взгляд это может показаться странным: однако, если включить в расчет еще один признак — переменную «пол» и использовать не линейную, а частную корреляцию, то результат получит закономерное объяснение. поскольку женщины в среднем имеют более длинные волосы, чем мужчины, а их рост в среднем ниже, чем у мужчин. После учета переменной «пол» частная корреляция между длиной волос и ростом может оказаться близкой к единице. Иными словами, если одна величина коррелирует с другой, то это может быть отражением того факта, что они обе коррелируют с третьей величиной или с совокупностью величин.

Если известна линейная связь между парами переменных X, Y и Z., то можно подсчитать частные коэффициенты корреляции, показывающие линейную корреляционную зависимость между двумя переменными при постоянной величине третьей переменной. Для определения частного коэффициента корреляции между переменными X и Y при постоянной величине переменной Z, используют формулу:

Заключение (z) в скобки означает, что влияние переменной z па корреляцию между Х и Y постоянно. В том случае, если бы влияния переменной Z не было бы совсем, мы бы получили обычный коэффициент корреляции Пирсона между переменными Х и У.

Аналогично строят частые корреляционные зависимости между Х и Z (при постоянной Y) и Y и Z. (при постоянной Х).

Значимость частного коэффициента корреляции оценивают по величине Тф, подсчитанной по формуле (5) для t-критерия Стьюдента с числом степеней свободы k = n - 2.

Для применения частного коэффициента корреляции необходимо соблюдать следующие условия:

1. Сравниваемые переменные  должны быть измерены в шкале  интервалов или отношений.

2. Предполагается, что все  переменные имеют нормальный  закон распределения.

3. Число варьирующих признаков  в сравниваемых переменных должно  быть одинаковым.

4. Для оценки уровня  достоверности корреляционного  отношения Пирсона следует пользоваться  формулой (11.9) и таблицей критических  значений для t-критерия Стьюдента  с числом степеней свободы  k = n - 2. (5).

 

Дисперсионный анализ. Основные понятия дисперсионного анализа

В процессе наблюдения за исследуемым объектом качественные факторы произвольно или заданным образом изменяются. Конкретная реализация фактора (например, определенный температурный режим, выбранное оборудование или материал) называется уровнем фактора или способом обработки. Модель дисперсионного анализа с фиксированными уровнями факторов называют моделью I, модель со случайными факторами - моделью II. Благодаря варьированию фактора можно исследовать его влияние на величину отклика. В настоящее время общая теория дисперсионного анализа разработана для моделей I.

В зависимости от количества факторов, определяющих вариацию результативного признака, дисперсионный анализ подразделяют на однофакторный и многофакторный.

Основными схемами организации исходных данных с двумя и более факторами являются:

- перекрестная классификация, характерная для моделей I, в которых  каждый уровень одного фактора  сочетается при планировании  эксперимента с каждой градацией  другого фактора;

- иерархическая (гнездовая) классификация, характерная для  модели II, в которой каждому случайному, наудачу выбранному значению  одного фактора соответствует  свое подмножество значений второго  фактора.

Если одновременно исследуется зависимость отклика от качественных и количественных факторов, т.е. факторов смешанной природы, то используется ковариационный анализ /3/.

При обработке данных эксперимента наиболее разработанными и поэтому распространенными считаются две модели. Их различие обусловлено спецификой планирования самого эксперимента. В модели дисперсионного анализа с фиксированными эффектами исследователь намеренно устанавливает строго определенные уровни изучаемого фактора. Термин «фиксированный эффект» в данном контексте имеет тот смысл, что самим исследователем фиксируется количество уровней фактора и различия между ними. При повторении эксперимента он или другой исследователь выберет те же самые уровни фактора. В модели со случайными эффектами уровни значения фактора выбираются исследователем случайно из широкого диапазона значений фактора, и при повторных экспериментах, естественно, этот диапазон будет другим.

Информация о работе Математические методы по "Психологии"