Автор работы: Пользователь скрыл имя, 08 Ноября 2013 в 13:34, курсовая работа
Впервые в истории русской школы (в соответствии с новой программой) в начальный курс математики включены элементы алгебры. Учащиеся 1 – 4 классов должны получить первоначальные сведения о математических выражениях, числовых равенствах и неравенствах, ознакомиться с буквенной символикой, с переменной, научить решать несложные уравнения и неравенства.
ВВЕДЕНИЕ 3
ГЛАВА 1. ОБЩЕЕ ПОНЯТИЕ О УРАВНЕНИЯХ И НЕРАВЕНСТВАХ 5
1.1 Понятия «равенство» и «неравенство» 5
1.2 Понятие «уравнение» 7
ГЛАВА 1 АЛГЕБРАИЧЕСКИЙ МАТЕРИАЛ В НАЧАЛЬНОЙ ШКОЛЕ 10
2.1. Необходимость введения алгебраического материала в начальной школе 10
2.2 Алгебраический материал по традиционной программе 11
2.3 Алгебраические понятия по системе Н.Ф.Виноградовой 14
2.4 Элементы алгебры по системе Л.В. Занкова 17
ЗАКЛЮЧЕНИЕ………………………………………………………………….29
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 30
Введение элементов алгебры
в начальный курс математики позволяет
с самого начала обучения вести планомерную
работу, направленную на формирование
у детей таких важнейших
Как видно из сказанного, алгебраическая часть программы имеет существенное значение. Работа над всеми перечисленными вопросами алгебраического содержания, в соответствии с тем, как это намечено в учебниках, должна вестись планомерно и систематически в течение всего начального курса обучения математике. При этом усвоение ни одного из вводимых понятий не должно доводиться до уровня формального определения. При обучении в следующих классах соответствующие понятия будут уточняться, трактовка некоторых из них будет претерпевать более или менее существенные изменения. Учитывая это, при обучении в начальных классах не следует забегать вперед, требовать каких бы то ни было формулировок, раскрывающих сущность рассматриваемых понятий. Это не только преждевременно, но и вредно, поскольку способствует закреплению в сознании детей знаний, которые в дальнейшем пришлось бы перестраивать. Определяя методику работы над вопросами алгебраического содержания, нужно, особенно четко представлять себе цель этой работы, задачу, которые должны быть решены на начальном этапе обучения [1, с. 15].
Рассмотрим формирование
понятий равенство и
В математике числовые равенства и неравенства делятся на истинные и ложные. В начальных классах вместо этих терминов употребляют слова «верные» и «неверные». Для лучшей подготовки детей к рассмотрению вопросов об истинности и ложности рассматриваемых равенств и неравенств в следующих классах полезно приучать детей к оценке истинности и ложности полученных равенств и неравенств уже с первых шагов обучения в начальных классах.
Так, в 1 классе, где еще термины «равенство» и «неравенство» не используются активно, учитель может при проверке правильности выполненных детьми вычислений задавать вопросы в такой форме: «Коля прибавил к шести восемь и получил 15. Верное это решение или неверное?», или предлагать детям упражнения, в которых требуется проверить решение данных примеров, найти неверные записи, заменить их верными и т.п. Аналогично при рассмотрении числовых неравенств, вида 5<6, 8>4 и более сложных, учитель может задавать вопрос в такой форме: «Верны ли эти записи?» (а после введения термина «неравенство»- «Верны ли эти неравенства?») или «Подбери такое число, чтобы, подставив его в «окошечко», мы получили верное равенство: 5+18=18+ » .
Начиная с первого класса,
дети знакомятся с преобразованиями
числовых выражений, выполняемыми на основе
применения изученных элементов
арифметической теории (нумерации, смысла
действий, свойств действий и др.).
Например, на основе знания нумерации,
разрядного состава чисел, учащиеся
могут представлять любое число
в виде суммы его разрядных
слагаемых. Это умение используется
при рассмотрении преобразования выражений
в связи с изучением многих
вычислительных приемов. Например: 23+4=(20+3)+4,
применяя затем известное уже
к этому времени правило
В связи с подобными
Решаются неравенства в начальной школе только методом подбора. Как правило, и задания формулируются так: «Подбери такое число, при котором данное неравенство будет верным». Довольно часто детям дают несколько значений переменной и предлагают из данного ряда чисел выбрать те, при подстановке которых в данное неравенство получится верное неравенство.
Работа с неравенствами в начальной школе в основном направлена на формирование понятия о переменной и с точки зрения обучения решению неравенств носит пропедевтический характер.
Изучая равенства и неравенства, дети знакомятся с уравнениями. При характеристике содержания в начальных классах отмечалось, что первое знакомство с ними происходит в первом классе, где оно вводится как название равенств вида: 3+х=8, 9-х=2, х-6=3.
В ходе решения этих уравнений
у детей должно быть постепенно сформировано
понимание уравнения как
Наряду с этим (основным для начальных классов) способом решения уравнений в ряде случаев можно использовать и другие, основанные на применении известных детям элементов арифметической теории. Например, уравнение вида х×17=17×35 может быть решено без выполнения вычислений - на основании знания переместительного свойства произведения. Аналогично уже в 1 классе уравнение вида 25+х=26+ 18 может быть решено на основе простого рассуждения: «Если к равным числам прибавили поровну, то и получится поровну. Значит, х=18.»
Сложность рассматриваемых уравнений от класса к классу, от года к году повышается в соответствии с требованиями, зафиксированными в программе.
Следует также обратить внимание
на особенности использования при
решении задач выражений и
уравнений. Работа по составлению является
необходимым условием обучения выражений,
соответствующих отдельным
Это следует учитывать, исходя из анализа конкретного текста задачи, чтобы не создавать искусственно дополнительных трудностей для учащихся. По той же причине не следует также настаивать, как это иногда делается, на составлении «всех возможных уравнений» к данной задаче.
Часто полезнее давать свободу учащимся для выбора способа решения, каждый раз подчеркивая преимущества (или недостатки) одного из них перед другим, не считать недочетом, если ученик выбрал «свой путь решения», разумеется, кроме тех случаев, когда, учителем или учебником, заранее выдвинуты определенные требования в этом отношении.
Одни задачи могут решаться без помощи уравнения, но в несколько действий, а другие могут ориентировать детей на решение с помощью уравнения.
Рассуждения при решении
задач разнообразны. После предварительного
рассмотрения и решения задачи не
обязательно проводить
Каждое из рассуждений
полезно рассмотреть с
Из сказанного ни в коем случае не следует, что от учащихся можно (или даже нужно) требовать составления всех возможных уравнений по одной и той же задаче.
При решении задач на движение можно использовать как запись отдельных действий, так и составление уравнения или выражения.
Выше уже отмечалось, что в обучении решению задач в четвертом классе является овладение учащимися решением задач с помощью составления уравнений. Система задач, представленная в учебнике, предусматривает постепенное усложнение соответствующих заданий, но в пределах тех их видов, которые определены программой.
Если дети научатся в начальных
классах решать задачи той степени
трудности, которые представлены в
учебниках, используя при этом как
арифметический, так и алгебраический
способы решения, то это обеспечит
необходимую преемственность
Первоначальные знания об элементах алгебры дети получают в первом классе, где они учатся сравнивать предметы и оперируют высказываниями «столько же», «столько же, да еще …», «столько же, но без …».
Во втором классе дети знакомятся с такой темой как «Выражения», без которой нельзя представить дальнейшее изучение курса математики, так как составной частью равенств, неравенств, уравнений является выражение с переменной или без нее.
Основное содержание темы составляют вопросы, относящиеся к алгебраической линии курса.
Рассматривая с учащимися эту тему, мы должны научить их:
-читать и записывать простейшие числовые выражения;
-составлять числовые выражения более сложной структуры, используя скобки;
-дать понятия о переменной и выражении, содержащем переменную;
-научить вычислять значения выражений с переменной при заданном наборе числовых значений этой переменной;
-отличать выражение с переменной от числового выражения;
-показать решения задач, в условии которых содержится переменная.
Целью знакомства второклассников с выражениями с переменной является подготовка к введению понятия об уравнении в третьем классе.
Работа над выражением
тесно связано с изучением
самих действий и оказывает большое
влияние на владение школьниками
такими понятиями, как равенства, неравенства,
уравнения. И поэтому, недостаточно
ясное представление о
В третьем классе изучается тема «Равенства и неравенства», которая состоит из следующих блоков вопросов алгебраического блока тесно связанного с логико-математическими понятиями:
-учащимся даются определения уравнения (равенство с буквой) и его корня (число, при подстановке которого в уравнение вместо переменной получается верное равенство);
-рассматриваются способы решения простейших уравнений с одной переменной (подбор, использование игровой формы «машины»);
-вводится понятие «неравенство с переменной» (без строгого определения), разъясняется смысл решения неравенства, показывается способ решения неравенств с переменной(перебор чисел по порядку, начиная с 0);
-предлагаются задачи, решаемые способом составления уравнения или неравенства.
Приступая к изучению вопросов алгебраического блока, дети знакомятся с числовыми равенствами и неравенствами. Термины «равенство» и «неравенство» вводятся без определений. В ходе выполнения упражнений учащиеся должны научиться свободно, употреблять в своей речи слова: верное равенство, неверное равенство, верное неравенство, неверное неравенство.
Название того или иного высказывания (равенство или неравенство) они определяют по знаку: если высказывание записано знака =, то оно называется равенством, а если с помощью знака < или >, то оно называется неравенством.
Информация о работе Методика изучения уравнений в начальных классах