Автор работы: Пользователь скрыл имя, 15 Мая 2013 в 10:11, курсовая работа
В данном курсе мы будем рассматривать различные системы массового обслуживания (СМО) и сети массового обслуживания (СеМО).
Под системой массового обслуживания (СМО) понимают динамическую систему, предназначенную для эффективного обслуживания потока заявок (требований на обслуживание) при ограничениях на ресурсы системы.
Введение 1
1. Основы теории массового обслуживания
1.1 Понятие случайного процесса 2
1.2 Марковский случайный процесс 2
1.3 Потоки событий 4
1.4 Уравнения Колмогорова для вероятностей состояний. 5
Финальные вероятности состояний
1.5 Задачи теории массового обслуживания 8
1.6 Классификация систем массового обслуживания 9
2. Системы массового обслуживания с ожиданием
2.1 Одноканальная СМО с ожиданием 10
2.2 Многоканальная СМО с ожиданием 15
3. Замкнутые СМО 22
4. Расчет показателей эффективности одноканальной СМО
с неограниченной очередью. 27
Список литературы 30
(15).
Среднее время пребывания заявки в системе. Обозначим - матожидание случайной величины — время пребывания заявки в СМО, которое складывается из среднего времени ожидания в очереди и среднего времени обслуживания . Если загрузка системы составляет 100%, очевидно, , в противном же случае:
.
Отсюда:
.
Пример 1. Автозаправочная станция (АЗС) представляет собой СМО с одним каналом обслуживания (одной колонкой).
Площадка при станции допускает пребывание в очереди на заправку не более трех машин одновременно (m = 3). Если в очереди уже находятся три машины, очередная машина, прибывшая к станции, в очередь не становится. Поток машин, прибывающих для заправки, имеет интенсивность =1 (машина в минуту). Процесс заправки продолжается в среднем 1,25 мин.
Определить:
вероятность отказа;
относительную и абсолютную пропускную способности АЗС;
среднее число машин, ожидающих заправки;
среднее число машин, находящихся на АЗС (включая обслуживаемую);
среднее время ожидания машины в очереди;
среднее время пребывания машины на АЗС (включая обслуживание).
Иначе говоря, среднее время ожидания равно среднему числу заявок в очереди, деленному на интенсивность потока заявок.
Находим вначале приведенную
По формулам (8):
Вероятность отказа 0,297.
Относительная пропускная способность СМО: q=1- =0,703.
Абсолютная пропускная способность СМО: A= =0,703 машины в мин.
Среднее число машин в очереди находим по формуле (12):
,
т.е. среднее число машин, ожидающих в очереди на заправку, равно 1,56.
Прибавляя к этой величине среднее число машин, находящихся под обслуживанием:
получаем среднее число машин, связанных с АЗС.
Среднее время ожидания машины в очереди по формуле (15):
Прибавляя к этой величине , получим среднее время, которое машина проводит на АЗС:
Системы с неограниченным ожиданием. В таких системах значение т не ограничено и, следовательно, основные характеристики могут быть получены путем предельного перехода в ранее полученных выражениях (5), (6) и т.п.
Заметим, что при этом знаменатель в последней формуле (6) представляет собой сумму бесконечного числа членов геометрической прогрессии. Эта сумма сходится, когда прогрессия бесконечно убывающая, т.е. при <1.
Может быть доказано, что <1 есть условие, при котором в СМО с ожиданием существует предельный установившийся режим, иначе такого режима не существует, и очередь при будет неограниченно возрастать. Поэтому в дальнейшем здесь предполагается, что <1.
Если , то соотношения (8) принимают вид:
(16).
При отсутствии ограничений по длине очереди каждая заявка, пришедшая в систему, будет обслужена, поэтому q=1, .
Среднее число заявок в очереди получим из (12) при :
.
Среднее число заявок в системе по формуле (13) при :
.
Среднее время ожидания получим из формулы (14) при :
.
Наконец, среднее время пребывания заявки в СМО есть:
.
2.2 Многоканальная СМО с ожиданием
Система с ограниченной длиной очереди. Рассмотрим канальную СМО с ожиданием, на которую поступает поток заявок с интенсивностью ; интенсивность обслуживания (для одного канала) ; число мест в очереди .
Состояния системы нумеруются по числу заявок, связанных системой:
нет очереди:
— все каналы свободны;
— занят один канал, остальные свободны;
— заняты -каналов, остальные нет;
— заняты все -каналов, свободных нет;
есть очередь:
— заняты все n-каналов; одна заявка стоит в очереди;
— заняты все n-каналов, r-заявок в очереди;
— заняты все n-каналов, r-заявок в очереди.
ГСП приведен на рис. 17. У
каждой стрелки проставлены
Рис. 17. Многоканальная СМО с ожиданием
Граф типичен для
процессов размножения и
Таким образом, все вероятности состояний найдены.
Определим характеристики эффективности системы.
Вероятность отказа. Поступившая заявка получает отказ, если заняты все n-каналов и все m-мест в очереди:
(18)
Относительная пропускная
способность дополняет
Абсолютная пропускная способность СМО:
(19)
Среднее число занятых каналов. Для СМО с отказами оно совпадало со средним числом заявок, находящихся в системе. Для СМО с очередью среднее число занятых каналов не совпадает со средним числом заявок, находящихся в системе: последняя величина отличается от первой на среднее число заявок, находящихся в очереди.
Обозначим среднее число занятых каналов . Каждый занятый канал обслуживает в среднем -заявок в единицу времени, а СМО в целом обслуживает в среднем А-заявок в единицу времени. Разделив одно на другое, получим:
.
Среднее число заявок в очереди можно вычислить непосредственно как математическое ожидание дискретной случайной величины:
(20)
где .
Здесь опять (выражение в скобках) встречается производная суммы геометрической прогрессии (см. выше (11), (12) — (14)), используя соотношение для нее, получаем:
Среднее число заявок в системе:
Среднее время ожидания заявки в очереди. Рассмотрим ряд ситуаций, различающихся тем, в каком состоянии застанет систему вновь пришедшая заявка и сколько времени ей придется ждать обслуживания.
Если заявка застанет не все каналы занятыми, ей вообще не придется ждать (соответствующие члены в математическом ожидании равны нулю). Если заявка придет в момент, когда заняты все n-каналов, а очереди нет, ей придется ждать в среднем время, равное (потому что «поток освобождений» -каналов имеет интенсивность ). Если заявка застанет все каналы занятыми и одну заявку перед собой в очереди, ей придется в среднем ждать в течение времени (по на каждую впереди стоящую заявку) и т. д. Если заявка застанет в очереди -заявок, ей придется ждать в среднем в течение времени . Если вновь пришедшая заявка застанет в очереди уже m-заявок, то она вообще не будет ждать (но и не будет обслужена). Среднее время ожидания найдем, умножая каждое из этих значений на соответствующие вероятности:
(21)
Так же, как и в случае одноканальной СМО с ожиданием, отметим, что это выражение отличается от выражения для средней длины очереди (20) только множителем , т. е.
.
Среднее время пребывания заявки в системе, так же, как и для одноканальной СМО, отличается от среднего времени ожидания на среднее время обслуживания, умноженное на относительную пропускную способность:
.
Системы с неограниченной длиной очереди. Мы рассмотрели канальную СМО с ожиданием, когда в очереди одновременно могут находиться не более m-заявок.
Так же, как и ранее, при анализе систем без ограничений необходимо рассмотреть полученные соотношения при .
Вероятности состояний получим из формул предельным переходом (при ). Заметим, что сумма соответствующей геометрической прогрессии сходится при и расходится при >1. Допустив, что <1 и устремив в формулах величину m к бесконечности, получим выражения для предельных вероятностей состояний:
(22)
Вероятность отказа, относительная и абсолютная пропускная способность. Так как каждая заявка рано или поздно будет обслужена, то характеристики пропускной способности СМО составят:
Среднее число заявок в очереди получим при из (20):
,
а среднее время ожидания — из (21):
.
Среднее число занятых каналов , как и ранее, определяется через абсолютную пропускную способность:
.
Среднее число заявок, связанных с СМО, определяется как среднее число заявок в очереди плюс среднее число заявок, находящихся под обслуживанием (среднее число занятых каналов):
.
Пример 2. Автозаправочная станция с двумя колонками (n = 2) обслуживает поток машин с интенсивностью =0,8 (машин в минуту). Среднее время обслуживания одной машины:
В данном районе нет другой
АЗС, так что очередь машин
перед АЗС может расти
Имеем:
Поскольку <1, очередь не растет безгранично и имеет смысл говорить о предельном стационарном режиме работы СМО. По формулам (22) находим вероятности состояний:
и т. д.
Среднее число занятых каналов найдем, разделив абсолютную пропускную способность СМО А= =0,8 на интенсивность обслуживания =0,5:
Вероятность отсутствия очереди у АЗС будет:
Среднее число машин в очереди:
Среднее число машин на АЗС:
Среднее время ожидания в очереди:
Среднее время пребывания машины на АЗС:
СМО с ограниченным временем ожидания. Ранее рассматривались системы с ожиданием, ограниченным только длиной очереди (числом m-заявок, одновременно находящихся в очереди). В такой СМО заявка, разраставшая в очередь, не покидает ее, пока не дождется обслуживания. На практике встречаются СМО другого типа, в которых заявка, подождав некоторое время, может уйти из очереди (так называемые «нетерпеливые» заявки).
Рассмотрим СМО подобного типа, предполагая, что ограничение времени ожидания является случайной величиной.
Предположим, что имеется n-канальная СМО с ожиданием, в которой число мест в очереди не ограничено, но время пребывания заявки в очереди является некоторой случайной величиной со средним значением , таким образом, на каждую заявку, стоящую в очереди, действует своего рода пуассоновский «поток уходов» с интенсивностью:
Если этот поток пуассоновский, то процесс, протекающий в СМО, будет марковским. Найдем для него вероятности состояний. Нумерация состояний системы связывается с числом заявок в системе — как обслуживаемых, так и стоящих в очереди:
нет очереди:
— все каналы свободны;
— занят один канал;
— заняты два канала;
— заняты все n-каналов;
есть очередь:
— заняты все n-каналов, одна заявка стоит в очереди;
— заняты все n-каналов, r-заявок стоят в очереди и т. д.
Граф состояний и переходов системы показан на рис. 23.
Рис. 23. СМО с ограниченным временем ожидания
Разметим этот граф, как и раньше; у всех стрелок, ведущих слева направо, будет стоять интенсивность потока заявок . Для состояний без очереди у стрелок, ведущих из них справа налево, будет, как и раньше, стоять суммарная интенсивность потока обслуживании всех занятых каналов. Что касается состояний с очередью, то у стрелок, ведущих из них справа налево, будет стоять суммарная интенсивность потока обслуживания всех n-каналов плюс соответствующая интенсивность потока уходов из очереди. Если в очереди стоят r-заявок, то суммарная интенсивность потока уходов будет равна .
Как видно из графа, имеет место схема размножения и гибели; применяя общие выражения для предельных вероятностей состояний в этой схеме (используя сокращенные обозначения , запишем:
(24)
Отметим некоторые особенности СМО с ограниченным ожиданием сравнительно с ранее рассмотренными СМО с «терпеливыми» заявками.
Если длина очереди не ограничена и заявки «терпеливы» (не уходят из очереди), то стационарный предельный режим существует только в случае (при соответствующая бесконечная геометрическая прогрессия расходится, что физически соответствует неограниченному росту очереди при ).
Напротив, в СМО с «нетерпеливыми» заявками, уходящими рано или поздно из очереди, установившийся режим обслуживания при достигается всегда, независимо от приведенной интенсивности потока заявок . Это следует из того, что ряд для в знаменателе формулы (24) сходится при любых положительных значениях и .