Задача оптимизациии для систем массового обслуживания

Автор работы: Пользователь скрыл имя, 06 Декабря 2012 в 12:19, реферат

Описание работы

Теория массового обслуживания – область прикладной математики, занимающаяся анализом процессов в системах производства, обслуживания, управления, в которых однородные события повторяются многократно, например, на предприятиях бытового обслуживания; в системах приема, переработки и передачи информации; автоматических линиях производства и др.
Предметом теории массового обслуживания является установление зависимостей между характером потока заявок, числом каналов обслуживан6ия, производительностью отдельного канала и эффективным обслуживанием с целью нахождения наилучших путей управления этими процессами.

Содержание работы

Введение…………………….……………………………………………...…..3
Многоканальная СМО с отказами……….…..…………….…..…...…………5
Основы теории массового обслуживания.……………………………..…....10
Понятие случайного процесса……………..…....…………………………....10
Марковский случайный процесс..…………..…..…………………………....11
Потоки событий…..……………..……………………….…………………....12
Уравнения Колмогорова для вероятностей состояний. …………………....13
Задачи теории массового обслуживания …………………………………....16
Одноканальная СМО с отказами…………………………..………………....18
Возможные постановки задач оптимизации n – канальных СМО с отказами
….………………………………………………………………………….…....23
Список литературы…………………………………………………………....24

Файлы: 1 файл

СРС-ИО-Задачи оптимизации для систем массового обслуживания.doc

— 339.00 Кб (Скачать файл)

.

Четвертое уравнение отбрасываем, добавляя вместо него нормировочное  условие:

.

Т.е. в предельном, стационарном режиме система S в среднем 40 % времени будет проводить в состоянии S0 (оба станка исправны), 20 % - в состоянии S1 (первый станок ремонтируется, второй работает), 27 % - в состоянии S2 (второй станок ремонтируется, первый работает), 13% - в состоянии S3 (оба станка ремонтируются). Знание этих финальных вероятностей может помочь оценить среднюю эффективность работы системы и загрузку ремонтных органов.

Пусть система S в состоянии S0 (полностью исправна) приносит в единицу времени доход 8 условных единиц, в состоянии S1 – доход 3 условные единицы, в состоянии S2 – доход 5 условных единиц, в состоянии S3 – не приносит дохода. Тогда в предельном, стационарном режиме средний доход в единицу времени будет равен условных единиц.

Станок 1 ремонтируется долю времени, равную . Станок 2 ремонтируется долю времени, равную . Возникает задача оптимизации. Пусть мы можем уменьшить среднее время ремонта первого или второго станка (или обоих), но это нам обойдется в определенную сумму. Спрашивается, окупит ли увеличение дохода, связанное с ускорением ремонта, повышенные расходы на ремонт? Нужно будет решить систему четырех уравнений с четырьмя неизвестными.

 

Задачи теории массового обслуживания

Примеры систем массового обслуживания (СМО): телефонные станции, ремонтные мастерские, билетные кассы, справочные бюро, станочные и другие технологические системы, системы управления гибких производственных систем и т.д.

Каждая СМО состоит из какого – то количества обслуживающих единиц, которые называются каналами обслуживания (это станки, транспортные тележки, роботы, линии связи, кассиры, продавцы и т.д.). Всякая СМО предназначена для обслуживания какого – то потока заявок (требований), поступающих в какие – то случайные моменты времени.

Обслуживание заявки продолжается какое – то, вообще говоря, случайное  время , после чего канал освобождается  и готов к приему следующей  заявки. Случайный характер потока заявок и времени обслуживания приводит к тому, что в какие – то периоды времени на входе СМО скапливается излишне большое количество заявок (они либо становятся в очередь, либо покидают СМО необслуженными). В другие же периоды СМО будет работать с недогрузкой или вообще простаивать.

Процесс работы СМО – случайный  процесс с дискретными состояниями и непрерывным временем. Состояние СМО меняется скачком в моменты появления каких - то событий (прихода новой заявки, окончания обслуживания, момента, когда заявка, которой надоело ждать, покидает очередь).

Предмет теории массового обслуживания – построение математических моделей, связывающих заданные условия работы СМО (число каналов, их производительность, правила работы, характер потока заявок) с интересующими нас характеристиками – показателями эффективности СМО. Эти показатели описывают способность СМО справляться с потоком заявок. Ими могут быть: среднее число заявок, обслуживаемых СМО в единицу времени; среднее число занятых каналов; среднее число заявок в очереди; среднее время ожидания обслуживания и т.д.

Математический анализ работы СМО очень облегчается, если процесс этой работы Марковский, т.е. потоки событий, переводящие систему из состояния в состояние – простейшие. Иначе математическое описание процесса очень усложняется и его редко удается довести до конкретных аналитических зависимостей. На практике не Марковские процессы с приближением приводятся к Марковским. Приведенный далее математический аппарат описывает Марковские процессы.

Классификация систем массового обслуживания

Первое деление (по наличию очередей):

  1. СМО с отказами;
  2. СМО с очередью.

В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем не обслуживается.

В СМО с очередью заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь и ожидает возможности быть обслуженной.

СМО с очередями подразделяются на разные виды в зависимости от того, как организована очередь – ограничена или не ограничена. Ограничения могут касаться как длины очереди, так и времени ожидания, «дисциплины обслуживания».

Итак, например, рассматриваются следующие  СМО:

●СМО с нетерпеливыми заявками (длина очереди и время обслуживания ограничено);

●СМО с обслуживанием с приоритетом, т.е. некоторые заявки обслуживаются вне очереди и т.д.

Кроме этого СМО делятся на открытые СМО и замкнутые СМО.

В открытой СМО характеристики потока заявок не зависят от того, в каком состоянии сама СМО (сколько каналов занято). В замкнутой СМО – зависят. Например, если один рабочий обслуживает группу станков, время от времени требующих наладки, то интенсивность потока «требований» со стороны станков зависит от того, сколько их уже исправно и ждет наладки.

Классификация СМО далеко не ограничивается приведенными разновидностями, но этого  достаточно.

 

Математические модели простейших систем массового обслуживания

Ниже будут рассмотрены примеры  простейших систем массового обслуживания (СМО). Понятие «простейшие» не означает «элементарные». Математические модели этих систем применимы и успешно  используются в практических расчетах.

 

Одноканальная СМО с отказами

Дано: система имеет один канал обслуживания, на который поступает простейший поток заявок с интенсивностью . Поток обслуживаний имеет интенсивность . Заявка, заставшая систему занятой, сразу же покидает ее.

Найти: абсолютную и относительную пропускную способность СМО и вероятность того, что заявка, пришедшая в момент времени t, получит отказ.

Система при любом t > 0 может находиться в двух состояниях: S0 – канал свободен; S1 – канал занят. Переход из S0 в S1 связан с появлением заявки и немедленным началом ее обслуживания. Переход из S1 в S0 осуществляется, как только очередное обслуживание завершится (рис.4).

Рис.4. Граф состояний одноканальной  СМО с отказами

Выходные характеристики (характеристики эффективности) этой и других СМО  будут даваться без выводов и  доказательств.

Абсолютная пропускная способность (среднее число заявок, обслуживаемых в единицу времени):

где – интенсивность потока заявок (величина, обратная среднему промежутку времени между поступающими заявками - );

– интенсивность потока обслуживаний (величина, обратная среднему времени обслуживания )

Относительная пропускная способность (средняя доля заявок, обслуживаемых системой):

Вероятность отказа (вероятность того, что заявка покинет СМО необслуженной):

Очевидны следующие соотношения: и .

Пример. Технологическая система состоит из одного станка. На станок поступают заявки на изготовление деталей в среднем через 0,5 часа . Среднее время изготовления одной детали равно . Если при поступлении заявки на изготовление детали станок занят, то она (деталь) направляется на другой станок. Найти абсолютную и относительную пропускную способности системы и вероятность отказа по изготовлению детали.

Решение.

Т.е. в среднем примерно 46 % деталей  обрабатываются на этом станке.

.

Т.е. в среднем примерно 54 % деталей  направляются на обработку на другие станки.

N – канальная СМО с отказами (задача Эрланга)

Это одна из первых задач теории массового  обслуживания. Она возникла из практических нужд телефонии и была решена в  начале 20 века датским математиком  Эрлангом.

Дано: в системе имеется n – каналов, на которые поступает поток заявок с интенсивностью . Поток обслуживаний имеет интенсивность . Заявка, заставшая систему занятой, сразу же покидает ее.

Найти: абсолютную и относительную пропускную способность СМО; вероятность того, что заявка, пришедшая в момент времени t, получит отказ; среднее число заявок, обслуживаемых одновременно (или, другими словам, среднее число занятых каналов).

Решение. Состояние системы S (СМО) нумеруется по максимальному числу заявок, находящихся в системе (оно совпадает с числом занятых каналов):

  • S0 – в СМО нет ни одной заявки;
  • S1 – в СМО находится одна заявка (один канал занят, остальные свободны);
  • S2 – в СМО находится две заявки (два канала заняты, остальные свободны);
  • . . .
  • Sn – в СМО находится n – заявок (все n – каналов заняты).

Граф состояний СМО представлен на рис. 5

Рис.5 Граф состояний для n – канальной  СМО с отказами

Почему граф состояний размечен именно так? Из состояния S0 в состояние S1 систему переводит поток заявок с интенсивностью (как только приходит заявка, система переходит из S0 в S1). Если система находилась в состоянии S1 и пришла еще одна заявка, то она переходит в состояние S2 и т.д.

Почему такие интенсивности  у нижних стрелок (дуг графа)? Пусть  система находится в состоянии S1 (работает один канал). Он производит обслуживаний в единицу времени. Поэтому дуга перехода из состояния S1 в состояние S0 нагружена интенсивностью . Пусть теперь система находится в состоянии S2 (работают два канала). Чтобы ей перейти в S1, нужно, чтобы закончил обслуживание первый канал, либо второй. Суммарная интенсивность их потоков равна и т.д.

Выходные характеристики (характеристики эффективности) данной СМО определяются следующим образом.

Абсолютная пропускная способность:

где n – количество каналов СМО;

– вероятность нахождения СМО в  начальном состоянии, когда все каналы свободны (финальная вероятность нахождения СМО в состоянии S0); 

 

Рис.6. Граф состояний для схемы  «гибели и размножения»

Для того, чтобы написать формулу  для определения  , рассмотрим рис.6

Граф, представленный на этом рисунке, называют еще графом состояний для схемы «гибели и размножения». Напишем сначала для общую формулу (без доказательства):

Кстати, остальные финальные вероятности  состояний СМО запишутся следующим  образом.

Вероятность того, что СМО находится в состоянии S1, когда один канал занят:

Вероятность того, что СМО находится  в состоянии S2, т.е. когда два канала заняты:

Вероятность того, что СМО находится  в состоянии Sn, т.е. когда все каналы заняты.

Теперь для n – канальной СМО  с отказами

При этом

Относительная пропускная способность:

Напомним, что это средняя доля заявок, обслуживаемых системой. При этом

;

.

Вероятность отказа:

Напомним, что это вероятность  того, что заявка покинет СМО необслуженной. Очевидно, что .

Среднее число занятых каналов (среднее число заявок, обслуживаемых одновременно):

При этом

.

Пример. Имеется технологическая система (участок), состоящая из трех одинаковых станков. В систему поступают для обработки детали в среднем через 0,5 часа ( ). Среднее время изготовления одной детали . Если при поступлении заявки на изготовление детали все станки заняты, то деталь направляется на другой участок таких же станков. Найти финальные вероятности состояний системы и характеристики (показатели эффективности) данной СМО.

,

т.е. в среднем две заявки на обработку  деталей в час.

.

Граф состояний системы представлен  на рис.7 

 

Рис.7Граф состояний для рассматриваемого примера

Возможные состояния системы:

S0 – в СМО (на участке) нет ни одной заявки;

S1 – в СМО (на участке) одна заявка;

S2 – в СМО (на участке) две заявки;

S3 – в СМО (на участке) три заявки (заняты все три станка).

Вероятность того, что все станки свободны:

Вероятность того, что один станок занят:

Вероятность того, что два станка заняты:

Вероятность того, что все три  станка заняты:

Т.е. в среднем в этой системе  обрабатывается 1,82 дет/ч (примерно 91 % направляемых деталей), при этом примерно 9 % деталей направляется для обработки на другие участки. Одновременно в среднем работает в основном один станок ( ). Но из–за случайных характеристик потока заявок иногда работают одновременно все три станка ( ), отсюда 9 % отказов.

 

Возможные постановки задач оптимизации n – канальных СМО с отказами

1.Определить оптимальное число  каналов, обеспечивающее минимум  затрат на систему, при условии  достижения требуемого уровня ее безотказной работы.

Пример. Пусть . Целевая функция (затраты на СМО) запишется: , где . Найти: .

Решение:

или

.

По другому можно записать:

.

Последнее равенство начинает выполняться  при  , т.к.

;
;

;

.

2.Определить оптимальное число  каналов, обеспечивающее максимум  прибыли от эксплуатации СМО в единицу времени.

Содержание каждого канала в  единицу времени обходится в  какую–то сумму. Чем больше каналов, тем больше затраты на эксплуатацию СМО. Вместе с тем, чем больше каналов (при  и ), тем больше доля обслуживаемых заявок. А каждая обслуженная заявка дает определенный (пусть постоянный) доход в единицу времени. При увеличении числа каналов растут доходы D, но растут и расходы на эксплуатацию СМО – R. Чтобы решить эту задачу, необходимо найти оптимальное число каналов , обеспечивающее максимум целевой функции , т.е. нужно максимизировать прибыль в единицу времени.

Информация о работе Задача оптимизациии для систем массового обслуживания