Автор работы: Пользователь скрыл имя, 18 Января 2013 в 20:28, реферат
Алгебра логики - раздел математики. Она оперирует логическими высказываниями.
Логическое высказывание - любое предложение в повествовательной форме, о котором можно однозначно сказать, истинно оно или ложно. Примеры логических высказываний:
"Москва - столица России" (высказывание истинно).
"После зимы наступает осень" (высказывание ложно).
Алгебра логики: основные понятия и законы. Понятие функционально полной системы логических элементов.
Алгебра логики - раздел математики. Она
оперирует логическими
Логическое высказывание - любое
предложение в
"Москва - столица России" (высказывание истинно).
"После зимы наступает осень" (высказывание ложно).
Простое высказывание - логическое высказывание, состоящее из одного утверждения.
Сложное высказывание - логическое высказывание, состоящее из нескольких утверждения, объединенных с помощью "связок": союзов "и", "или (либо)", частицы "не", связки "если, то" и др. Примеры сложных высказываний:
"Иван сдает экзамен по физике и информатике".
Высказывание содержит два утвеждения, объединенных "и":
Утверждение1: "Иван сдает экзамен по физике".
Утверждение2: "Иван сдает экзамен по информатике".
"Игорь решил записаться в секцию по воллейболу или баскетболу".
Высказывание содержит два утвеждения, объединенных "или":
Утверждение1: "Игорь решил записаться в секцию по воллейболу".
Утверждение2: "Игорь решил записаться в секцию по баскетболу".
"Если Илья будет много
готовиться самостоятельно и
будет заниматься с
Высказывание содержит три утвеждения, объединенных связкой "если, то" и союзом "и":
Утверждение1: "Илья будет много готовиться самостоятельно".
Утверждение2: "Илья будет заниматься с репетитором".
Утверждение2: "Илья поступит в ВУЗ".
Логические операции - "связки": союзы и частицы естественного языка, образующие из простых высказываний сложные, представленные в формальном виде . Подробно основные логические операции рассмотрены в этой статье.
Логическое выражение - простое или сложное логическое высказывание, представленное в формальном виде. Примеры логических выражений:
простое: A,
сложное: AVB→C,\
где A, B, C - утверждения;
Λ, V, → - логические операции.
Законы алгебры логики - законы,
позволяющие преобразовывать
Логическая переменная - переменная,
которая может принимать
Логическая функция - функция, аргументы и значение которой могут принимать значение 1 (истина) или 0 (ложь).
Таблица истинности - таблица, которая используется для описания логических функций, в частности отдельных логических операций. Примеры таблиц истинности для часто используемых логических операций.
Диаграммы Эйлера-Венна - диаграммы, которые
служат для наглядного представления
всех вариантов пересечения
Из множества функционально полных наборов рассмотрим только те, которые имеют наибольшее практическое значение.
1. Основная функционально полная
система логических функций.
· f10 – инверсия (логическая связь НЕ, логическое отрицание);
· f1 – конъюнкция (логическая связь И, логическое умножение),
· f7 – дизъюнкция (логическая связь ИЛИ, логическое сложение).
Этот набор получил название функционально полной системы логических функций (ОФПС). Из теоремы о функциональной полноте следует, что основная функционально полная система логических функций является избыточной, так как условиям теоремы отвечают наборы функций f10 и f1 или f10 и f7. Свойства этих функций были рассмотрены ранее.
Из определения представления
переключательной функции в виде
дизъюнктивной или
2. Законы алгебры логики в
ОФПС и их следствия. В
· переместительный (коммутативный);
· сочетательный (ассоциативный);
· распределительный (дистрибутивный);
· инверсии (правило Де Моргана).
Переместительный закон. Этот закон справедлив как для дизъюнкции, так и для конъюнкции:
x1 Úx2 = x2 Úx1;
x1 Ùx2 = x2 Ù x1.
Справедливость выражения (5.1) нетрудно доказать простой подстановкой в него различных значений x1 и x2. Поскольку любую перестановку большего количества слагаемых можно свести к последовательности перестановок слагаемых в отдельных парах, то переместительный закон будет справедлив при любом числе слагаемых.
Сочетательный закон. Этот закон, так же как и переместительный, является симметричным, т. е. справедливым и для дизъюнкции, и для конъюнкции:
x1 Úx2 Úx3 = x1Ú(x2 Úx3) = (x1 Úx2)Úx3= x2Ú( x1 Úx3); (2)
x1 Ùx2 Ùx3 = x1Ùx2 Ùx3) = (x1 Ùx2)Ùx3= x2Ù( x1 Ùx3).
Доказательство этого закона также не представляет никаких трудностей и может быть выполнено простой подстановкой.
Распределительный закон. В отличие от обычной алгебры алгебра логики симметрична. В ней справедливы два распределительных закона:
для логического умножения
1. Распределительный закон 1-го рода записывается следующим образом:
(x1Úx2)Ùx3=(x1Ùx3)Ú ( x2 Ùx3) .
Справедливость формулы (5.3), а также и ее более общего случая, когда в скобках заключена сумма любого количества слагаемых, можно доказать путем установления идентичности условий обращения в 0 или 1 ее левой и правой частей. Условием обращения в нуль левой части выражения (5.3) состоит в том, чтобы нулю равнялся либо один аргумент х3, либо одновременно аргументы x1 и x2. Условия обращения в нуль правой части выражения (5.1) такие же. Следовательно, распределительный закон 1-го рода справедлив для алгебры логики.
2. Распределительный закон 2-го рода имеет вид
(x1Ùx2)Úx3=(x1Úx3)Ù ( x2Úx3).
Cправедливость формулы (4) (при любом количестве аргументов) нетрудно доказать посредством установления идентичности условий обращения обеих ее частей в единицу.
Закон инверсии (правило Де Моргана). Этот закон, так же как и все предыдущие, симметричен относительно логических сложения и умножения.
1. Отрицание логической суммы нескольких аргументов равно логическому произведению отрицаний этих же аргументов:
(5)
Доказательство закона не представляет трудностей, поскольку условие обращения в нуль как левой, так и правой частей выражения (5) состоит в том, чтобы был истинным хотя бы один аргумент.
2. Отрицание логического
(6)
Справедливость этого закона следует из того, что условие обращения в единицу обеих частей формулы (6) заключается в том, чтобы был ложным хотя бы один аргумент.
Следствия из законов алгебры логики. Из доказанных выше законов можно вывести ряд следствий, которые сформулируем в виде правил.
Правило выполнения совместных логических
действий (правило старшинства
Старшинство операции инверсии вытекает из закона инверсии, в соответствии с которым логическая сумма отрицаний некоторых аргументов не равна отрицанию их суммы (это справедливо и для логического произведения). Это значит, что ни операцию дизъюнкции, ни операцию конъюнкции нельзя проводить, игнорируя знак отрицания над каким-либо из логических аргументов, т. е. операцию отрицания надо проводить в первую очередь.
Относительно операций логического сложения и умножения на основании симметричности законов алгебры логики можно сказать, что они «равноправны». Из этого следует, что можно условиться считать более старшей операцией любую из них, но, приняв какое-либо условие, надо придерживаться его все время. На практике оказалось удобнее считать более старшей операцию логического умножения, так как это соответствует правилам обычной алгебры и для нас более привычно.
На основе изложенного можно сформулировать следующее правило выполнения совместных логических действий: если в логическом выражении встречаются только действия одной и той же ступени, то их принято выполнять в том порядке, в котором они написаны; если в логическом выражении встречаются действия различных ступеней, то сначала принято выполнять действия первой ступени, затем — второй, и только после этого — третьей. Всякое отклонение от этого порядка должно быть обозначено скобками.
Правило склеивания. Прежде чем сформулировать само правило, введем некоторые новые понятия. Если имеется некоторый конечный набор логических аргументов x1, x2, … xn, то логическое произведение любого их числа называется элементарным в том случае, когда сомножителями в нем являются либо одиночные аргументы, либо отрицания одиночных аргументов. Так, например, f1(х1, х2, x3, х4)= х1× х2× x3×х4 — элементарное произведение (элементарная конъюнкция); —не является элементарным произведением.
Cимвол любого аргумента в элементарной конъюнкции может встречаться только один раз, поскольку произведение аргумента самого на себя равно этому же аргументу, а произведение аргумента на свое отрицание равно нулю. Количество сомножителей в элементарной конъюнкции называется ее рангом.
Два элементарных произведения одинакового ранга r называются соседними, если они являются функциями одних и тех же аргументов и отличаются только знаком отрицания (инверсии) одного из сомножителей. Например, элементарные конъюнкции
f1(х1, х2, x3, х4)= х1× х2× x3×х4 и f3(х1, х2, x3, х4)=
являются соседними, так как отличаются только одной инверсией в переменной x2, а элементарные конъюнкции
f3(х1, х2, x3, х4)= и f4(х1, х2, x3, х4)=
соседними не являются.
Правило склеивания для элементарных конъюнкций может быть сформулировано следующим образом: логическую сумму двух соседних произведений некоторого ранга r можно заменить одним элементарным произведением ранга r-1, являющимся общей частью исходных слагаемых.
Это правило является следствием распределительного закона 1-го рода и доказывается путем вынесения за скобку общей части слагаемых, являющихся соседними конъюнкциями. Тогда в скобках остается логическая сумма некоторого аргумента и его инверсии, равная единице, что и доказывает справедливость правила.
Например,
Поскольку алгебра логики является симметричной, то все определения, данные для конъюнкции, будут справедливы и для дизъюнкции.
Если имеется некоторый
Количество слагаемых в
Правило склеивания двух элементарных дизъюнкций формулируется так: логическое произведение двух соседних сумм некоторого ранга r можно заменить одной элементарной суммой ранга r-1, являющейся общей частью исходных сомножителей.
Это правило является следствием распределительного закона 2-го рода и применяется для упрощения логических выражений.
Например:
Правило поглощения. Так же как и склеивание, поглощение может быть двух видов. Правило поглощения для двух элементарных конъюнкций формулируется так: логическую сумму двух элементарных произведений разных рангов, из которых одно является собственной частью другого, можно заменить слагаемым, имеющим меньший ранг.
Это правило является следствием распределительного закона 1-го рода. Доказывается оно посредством вынесения за скобку общей части слагаемых. В скобках останется логическая сумма некоторого выражения и единицы, равная в свою очередь также единице, что и доказывает справедливость правила. Например,
Правило поглощения для двух элементарных дизъюнкций: логическое произведение двух элементарных сумм разных рангов, из которых одна является общей частью другой, можно заменить сомножителем, имеющим меньший ранг.
Это правило является следствием распределительного закона 2-го рода и также находит широкое применение для упрощения логических функций.
Правило развертывания. Это правило
регламентирует действие, обратное склеиванию.
Иногда требуется представить
· в развертываемую элементарную конъюнкцию ранга r в качестве дополнительных сомножителей вводится п-r единиц, где п — ранг конституенты;
· каждая единица представляется в виде логической суммы некоторой, не имеющейся в исходной конъюнкции переменной и ее отрицания: ;