Отношения между понятиями. Виды совместимости и несовместимости

Автор работы: Пользователь скрыл имя, 31 Декабря 2013 в 10:30, контрольная работа

Описание работы

Окружающий нас мир по своей природе — очень сложная система. Проявляется эта природа в том, что все предметы, которые мы только можем себе представить, всегда находятся во взаимосвязи с какими-либо другими предметами. Существование одного обусловлено существованием другого. Рассматривая отношения между понятиями, необходимо дать определение понятий сравнимых и несравнимых. Несравнимые понятия далеки друг от друга по своему содержанию и не имеют общих признаков. Так, «гвоздь» и «вакуум» будут несравнимыми понятиями. Все понятия, которые нельзя назвать несравнимыми, являются сравнимыми. Они имеют некоторые общие признаки, позволяющие определить степень приближенности одного понятия другому, степень их схожести и различия [3, с.54].

Содержание работы

1. Отношения между понятиями. Виды совместимости и несовместимости.. 3
2. Сложное суждение. Импликация, эквиваленция, отрицание. Таблицы истинности 10
3. Умозаключение по аналогии. Виды аналогий 15
Список использованной литературы 18

Файлы: 1 файл

логика (вар. 4) (2).doc

— 148.50 Кб (Скачать файл)

Содержание 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Отношения между понятиями. Виды совместимости и несовместимости

Окружающий  нас мир по своей природе —  очень сложная система. Проявляется  эта природа в том, что все  предметы, которые мы только можем  себе представить, всегда находятся во взаимосвязи с какими-либо другими предметами. Существование одного обусловлено существованием другого. Рассматривая отношения между понятиями, необходимо дать определение понятий сравнимых и несравнимых. Несравнимые понятия далеки друг от друга по своему содержанию и не имеют общих признаков. Так, «гвоздь» и «вакуум» будут несравнимыми понятиями. Все понятия, которые нельзя назвать несравнимыми, являются сравнимыми. Они имеют некоторые общие признаки, позволяющие определить степень приближенности одного понятия другому, степень их схожести и различия [3, с.54].

Сравнимые понятия  имеют разделение на совместимые  и несовместимые. Разделение это  проводится исходя из объемов данных понятий. Объемы совместимых понятий  совпадают полностью или в  части, и содержание этих понятий не имеет признаков, исключающих совпадение их объемов. Объемы несовместимых понятий не имеют общих элементов.

В целях большей  наглядности и лучшего усвоения отношения между понятиями принято  изображать с помощью круговых схем, называемых кругами Эйлера. Каждый круг обозначает объем понятия, а каждая его точка — предмет, содержащийся в его объеме. Круговые схемы позволяют представить отношение между различными понятиями.

Отношения совместимости  могут быть трех видов. Сюда входят равнозначность, перекрещивание и подчинение.

Равнозначность. Отношение равнозначности иначе  называется тождеством понятий. Оно  возникает между понятиями, содержащими  один и тот же предмет. Объемы этих понятий совпадают полностью  при разном содержании. В этих понятиях мыслится либо один предмет, либо класс предметов, содержащий более чем один элемент. Говоря более просто, в отношении равнозначности находятся понятия, в которых мыслится один и тот же предмет.

В качестве примера, иллюстрирующего отношения равнозначности, можно привести понятия «равносторонний прямоугольник» и «квадрат». В этих понятиях содержится отражение одного и того же предмета — квадрата, значит, объемы этих понятий полностью совпадают. Однако содержание их различно, потому что каждое из них содержит разные признаки, характеризующие квадрат. Отношение между двумя подобными понятиями на круговой схеме отражается в виде двух полностью совпадающих кругов (рис. 1).

Рис. 1. Отношение между двумя подобными понятиями на круговой схеме в виде двух полностью совпадающих кругов [8]

 

 Пересечение  (перекрещивание). Понятиями, находящимися  в отношении пересечения, признаются  те, объемы которых совпадают  частично. Объем одного, таким образом,  частично входит в объем другого  и наоборот. Содержание таких  понятий будет разным. Схематичное отражение отношение пересечения находит в виде двух частично совмещенных кругов (рис. 2). Место пересечения на схеме для удобства штрихуется. Примером могут служить понятия «селянин» и «тракторист»; «математик» и «репетитор». Та часть круга А, которая не пересечена с кругом В, содержит отражение всех селян — не трактористов. Та часть круга В, которая не пересечена с кругом А, содержит отражение всех трактористов, которые не являются селянами. В месте пересечения кругов А и В мыслятся селяне-трактористы. Таким образом, получается, что не все селяне есть трактористы и не все трактористы являются селянами.

Рис. 2. Схематичное отражение отношение пересечения находит в виде двух частично совмещенных кругов [8]

 

Подчинение (субординация). Отношение субординации характерно тем, что объем одного понятия полностью входит в объем другого, но не исчерпывает его, а составляет лишь часть. Когда в отношение подчинения входит два понятия, каждое из которых является общим (но не единичным), понятие А (подчиняющее) становится родом, а В (подчиненное) — видом. То есть понятие «планета» будет родом для понятия «Земля», а последнее есть вид. Бывают случаи, когда отдельное понятие может быть одновременно и родом, и видом. Это происходит, если понятиерод, содержащее в себе понятие-вид, относится к третьему понятию, которое шире последнего по объему. Получается тройное подчинение, когда более общее понятие подчиняет менее общее, но одновременно находится в отношении подчинения с другим, имеющим больший объем. В качестве примера можно привести следующие понятия: «биолог», «микробиолог» и «ученый». Понятие «биолог» является подчиняющим по отношению к понятию «микробиолог», но подчинено понятию «ученый».

Это отношения  род — > вид — > индивид [1, с.102].

В таком отношении находятся, к примеру, понятия «планета» и «Земля»; «спортсмен» и «боксер»; «ученый» и «физик». Как несложно заметить, здесь объем одних понятий шире, чем других. Ведь Земля суть планета, но не каждая планета является Землей. Кроме Земли есть еще Марс, Венера, Меркурий и еще множество планет, в том числе неизвестных человеку. Та же ситуация возникает и в других приведенных примерах. Не каждый спортсмен — боксер, но боксер — это всегда спортсмен; любой физик есть ученый, но, говоря об ученом, мы не всегда подразумеваем физика и т. д. Здесь одно из понятий является подчиненным, другое — подчиняющим. Очевидно, что подчиняет понятие, имеющее больший объем. Подчиняющее понятие обозначается буквой А, подчиненное — буквой В.

На схеме  отношение подчинения отображается в виде двух кругов, один из которых вписан в другой (рис 3).

Рис. 3. Отношение подчинения [8]

 

Возможна ситуация, когда в отношение подчинения вступают общее и единичное понятия. В этом случае общее и по совместительству подчиняющее понятие является видом. Единичное понятие становится по отношению к общему индивидом. Такой вид отношения иллюстрирует подчинение понятия «Земля» понятием «планета». Также можно привести следующий пример: «русский писатель» — «Н. Г. Чернышевский». Забегая вперед, можно отметить, что отношение «род — > вид — > индивид» используется в таких логических операциях с понятиями, как обобщение, ограничение, определение и деление.

Таким образом, отношение подчинения упрощенно  можно отразить в линейных схемах: «род — > вид — > вид».

Несовместимыми  являются понятия, объемы которых не совпадают ни полностью, ни частично. Это происходит в результате того, что в содержании данных понятий  присутствуют признаки, которые полностью  исключают совпадение их объемов [7, с.87].

Отношения несовместимости принято делить на три вида, среди которых различают соподчинение, противоположность и противоречие.

Соподчинение. Отношение соподчинения возникает  в случае, когда рассматриваются  несколько понятий, исключающих  друг друга, но при этом имеющих подчинение другому, общему для них, более широкому (родовому) понятию. Так как подобные понятия исключают друг друга, совершенно естественно, что они не перекрещиваются. Например, понятие «огнестрельное оружие» в своем объеме содержит «револьвер», «автомат», «винтовка» и др. На круговой схеме отношение соподчинения изображается в виде нескольких кругов (их количество соответствует непересекающимся понятиям), вписанных в один, больший круг (рис. 4). Понятия, находящиеся в отношении подчинения к более общему для них понятию, но не пересекающиеся, носят название соподчиненных.

Рис. 4. Отношение  соподчинения

 

Соподчиненные понятия — это виды родового понятия.

При определении  понятий, входящих в отношение соподчинения, иногда возможна ошибка. Она заключается в том, что вместо взаимоисключающих понятий в качестве примера приводятся понятия, подчиненные одно другому (например, «писатель» — «русский писатель» — «Н. В. Гоголь»). В результате отношение соподчинения подменяется отношением подчинения, что недопустимо. На круговой схеме отношение противоположности изображается как круг, разделенный на несколько частей противоположными понятиями. Противоположные понятия, допустим «белый» и «черный», находятся на разных сторонах этого круга и отделены друг от друга другими понятиями, среди которых находятся, например, «серый» и «зеленый» (рис. 5).

Рис. 5. Отношение  противоположности

 

Противоположность (контрастность). Понятиями, находящимися в отношении противоположности, можно назвать такие виды одного рода, содержания каждого из которых отражают определенные признаки, не только взаимоисключающие, но и заменяющие друг друга.

Объемы двух противоположных понятий составляют в своей совокупности лишь часть  объема общего для них родового понятия, видами которого они являются и которому они соподчинены [2, с.66].

Каждое из этих понятий в содержании имеет признаки, которые при наложении на противоположное  понятие перекрывают (заменяют) признаки последнего.

Характерно, что  данные понятия по своей языковой природе являются словами-антонимами. Эти слова хорошо отражают контраст, вследствие чего широко используются в учебном процессе. Словами-антонимами, выражающими противоположные понятия, являются: «верх» — «низ», «черное» — «белое», «тяжелый снаряд» — «легкий снаряд» и т. д.

Противоречие (контрадикторность). Отношение противоречия возникает  между двумя понятиями, одно из которых  содержит определенные признаки, а  другое отрицает (исключает) эти признаки, не заменяя их другими. В отношение  противоречия вступают положительные  и отрицательные понятия. Слова, составляющие противоречивые понятия, также являются антонимами. Таким образом, на линейной схеме формулу отношения противоречия можно изобразить следующим образом: положительное понятие следует отметить буквой А, а отрицательное (противоречащее последнему) обозначить как не-А. Понятия «громкий» и «негромкий», «высокий» и «невысокий», «приятный» и «неприятный» отлично иллюстрируют отношение противоречия. То есть дом может быть большим и небольшим; кресло удобным и неудобным; хлеб свежим и несвежим и т. д.

В связи с  этим два видовых понятия, находящихся  в отношении противоречия, занимают весь объем понятия, являющегося  для них родовым. Следует особо  отметить, что между двумя противоречащими  понятиями не может быть никакого иного понятия.

При использовании  для наглядности кругов Эйлера отношение  противоречия изображается как круг, разделенный на две части, А и  В (не-А) (рис. 6).

Рис. 6. Отношение  противоречия

  1. Сложное суждение. Импликация, эквиваленция, отрицание. Таблицы истинности

Понятие сложных  суждений неразрывно связано с конъюнкцией, дизъюнкцией, импликацией, эквиваленцией  и отрицанием.

Это так называемые логические связки. Они используются в качестве объединяющего звена, привязывающего одно простое суждение к другому. Именно так образуются сложные суждения. То есть сложные суждения — это суждения, созданные из двух простых.

Отношение истинности суждений отображается в таблицах. Эти таблицы  отражают все возможные случаи истинности и ложности суждений, причем каждое из простых суждений, входящее в состав сложного, отражается в «шапке» таблицы в виде буквы (например, a, b). Истинность или ложность отражается в виде букв «И» или «Л» (истина и ложь соответственно) [4, с.48].

Прежде чем рассматривать  конъюнкцию, дизъюнкцию, импликацию, эквиваленцию и отрицание, имеет смысл дать им краткую характеристику. Данные логические связки называют логическими постоянными.

В литературе можно  встретить их иное название — логические константы, однако от этого не меняется их суть. В нашем языке эти постоянные выражаются определенными словами. Так, конъюнкция выражается союзами «да», «но», «хотя», «зато», «и» и другими, а дизъюнкция — при помощи союзов «или», «либо» и др. Можно говорить об истинности конъюнкции, если истинны оба простых суждения, входящих в нее. Дизъюнкция истинна, когда истинно только одно простое суждение. Это относится к строгой дизъюнкции, нестрогая же истинна при условии истинности хотя бы одного из составляющих ее простых суждений. Импликация характеризуется истинностью всегда, кроме одного случая.

Рассмотрим  сказанное выше подробнее [8].

Конъюнкция (a^b) — это способ связи простых  суждений в сложные, при котором  истинность полученного суждения напрямую зависит от истинности составных. Истинность таких суждений достигается только тогда, когда оба простых суждения (и а, и b) так же истинны. Если хотя бы одно из данных суждений ложно, то ложным следует признать и образованное из них новое, сложное суждение. Например, в суждении «Этот автомобиль очень качественный (а) и пробежал всего десять тысяч метров (b)» истинность зависит как от его правой стороны, так и от левой. Если оба простых суждения истинны, то истинно и сложное, образованное из них. В противном случае (если хотя бы одно из простых суждений ложно) оно является ложным. Это суждение является характеристикой конкретному автомобилю. Ложность одного из простых суждений, очевидно, не исключает истинности другого, и это может приводить к ошибкам, связанным с определением истинности сложных суждений, образованных при помощи конъюнкции. Конечно, истинность одного простого суждения не исключается ложностью другого, но не следует забывать, что мы даем характеристику предмету, и с этой точки зрения ложность одного из простых суждений рассматривается с другой стороны. Это связано с тем, что с ложностью суждения по одному из пунктов данной характеристики характеристика в целом становится ложной (другими словами, ведет к передаче неверной информации о машине в целом).

Информация о работе Отношения между понятиями. Виды совместимости и несовместимости