Парадоксы Логики

Автор работы: Пользователь скрыл имя, 28 Января 2013 в 15:28, реферат

Описание работы

Парадокс — это два противоположных, несовместимых утверждения, для каждого из которых имеются кажущиеся убедительными аргументы. Наиболее резкая форма парадокса — антиномия, рассуждение, доказывающее эквивалентность двухутверждений, одно из которых является отрицанием другого.

Содержание работы

Введение
1 Глава 1 Парадоксы Логики
2 Глава 2 Их развитие в логике
Заключение
Список использованной литературы

Файлы: 1 файл

logika_1 (1).doc

— 113.50 Кб (Скачать файл)

Департамент образования  города Москвы

Самарский филиал

Государственного  бюджетного образовательного учреждения

высшего профессионального  образования города Москвы

«Московский городской  педагогический университет»

 

Факультет иностранных  языков и PR-технологий

Кафедра массовых коммуникаций

 

 

 

 

 

 

                                           Реферат 

 

              Тема «Роль парадоксов в развитие  логики»  

 

 

 

 

                                                                          

 

Студентка 1 курса

очной формы обучения

отделения «Связи  с

общественностью»

Самуткиной  Натальи 

 

 

 

 

 

                                                                                           Преподаватель: Ивунина  Евгения  Евгеньевна            

 

 

 

 

 

 

Оглавление

Введение 

1 Глава 1 Парадоксы Логики

2 Глава 2 Их развитие в логике 

Заключение 

Список использованной  литературы 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Глава 1

Парадоксы Логики

 

Парадокс — это два противоположных, несовместимых утверждения, для каждого из которых имеются кажущиеся убедительными аргументы. Наиболее резкая форма парадокса — антиномия, рассуждение, доказывающее эквивалентность двухутверждений, одно из которых является отрицанием другого. Особой известностью пользуются парадоксы в самых строгих и точных науках —математике и логике. И это не случайно.

Логика — абстрактная наука. В ней нет экспериментов, нет даже фактов в

обычном смысле этого слова. Строя свои системы, логика исходитконечном

счете из анализа реального мышления. Но результаты этого анализа носят

синтетический характер. Они не являются констатациями каких-либо отдельных процессов или событий, которые должна была бы объяснить теория. Такой анализ нельзя, очевидно, назвать наблюдением: наблюдается всегда конкретное явление. Конструируя новую теорию, ученый обычно отправляется от фактов, от того, что можно наблюдать в опыте. Как бы ни была свободна его творческая фантазия, она должна считаться с одним непременным обстоятельством: теория имеет смысл только в том случае, когда она согласуется с относящимися к ней фактами. Теория, расходящаяся с фактами и наблюдениями, является надуманной и ценности не имеет.

Но если в логике нет экспериментов, нет фактов и нет самого наблюдения, то чем сдерживается логическая фантазия? Какие если не факты, то факторы принимаются во внимание при создании новых логических теорий? Расхождение логической теории с практикой действительного мышления нередко обнаруживается в форме более или менее острого логического парадокса, а иногда даже в форме логической антиномии, говорящей о внутренней противоречивости теории. Этим как раз объясняется то значение, которое придается парадоксам в логике, и то большое внимание, которым они в ней пользуются. Один из первых и, возможно, лучших парадоксов был записан Эвбулидом, греческим поэтом и философом, жившим на Крите в VI веке до н. э. В этом парадоксе критянин Эпименид утверждает, что все критяне  - лжецы. Если он говорит правду, то он лжет. Если он лжет, то он говорит правду. Так кто же Эпименид  - лжец или нет? Другой греческий философ Зенон Элейский составил серию парадоксов о бесконечности  - так называемые “апории” Зенона.

                                         

                                       Парадокс «лжеца»

Наиболее известным  и, пожалуй, самым интересным из всех логических парадоксов является парадокс «Лжец». Он-то главным образом и прославил имя открывшего его Евбулида из Милета.Имеются варианты этого парадокса, или антиномии, многие из которых являются только по видимости парадоксальными. В простейшем варианте «Лжеца» человек произносит всего одну фразу: «Я лгу». Или говорит: «Высказывание, которое я сейчас произношу, является ложным». Или: «Это высказывание ложно». Если высказывание ложно, то говорящий сказал правду, и значит, сказанное им не является ложью. Если же высказывание не является ложным, а говорящий утверждает, что оно ложно, то это его высказывание ложно. Оказывается, таким образом, что, если говорящий лжет, он говорит правду, и наоборот. Исходная (древняя) формулировка представляет собой рассказ о том, как некий Эпименид, уроженец острова Крит, в пылу спора воскликнул: «Все критяне – лжецы!». На что услышал возражение: «Но ведь ты сам – критянин! Так солгал ты или нет?». Если предположить, что Эпименид сказал правду, то выходит, что он, как и все критяне, – лжец. А значит, он солгал. Если же он солгал, тогда получается, что он, как и все критяне, – не лжец. А значит, он сказал правду. Действительно, согласно свидетельству дренегреческого историка Плутарха (I в. н.э.), критяне пользовались в древности дурной славой людей, действующих обманом, хитростью и воровскими уловками. Эпименид был прав, говоря о лжецах (в том числе и о себе). Получается прямо по Бернсу:

Нет, у него не лживый взгляд,

Его глаза не лгут.

Они правдиво говорят,

Что их владелец – плут.

Р. Бернс (пер. С.Я. Маршака)

Это рассуждение, вообще говоря, некорректное, в нем есть явные ошибки. Если Эпименид солгал, то отрицание фразы «все Критяне  лжецы» будет звучать так: «не  все Критяне лжецы», а вовсе  не так: «все критяне не лжецы». Но если внести такое исправление в рассуждение, доказательство развалится. Если Эпименид лжец, а остальные критяне – нет, то никакого парадокса не возникает. Другая ошибка заключается в том, что лжецами мы называем не тех, кто лжет всегда, а тех, кто делает это всего лишь часто. Соответственно, даже если Эпименид – лжец, то не обязательно он солгал именно в этой фразе. Снова доказательство разваливается там, где написано: «А значит, он солгал». Может, в этот раз не солгал, а вообще он и другие критяне – лжецы и лгут регулярно. Снова нет парадокса.В средние века распространенной была такая формулировка:

– Сказанное Платоном – ложно, – говорит Сократ.

– То, что сказал Сократ, – истина, – говорит Платон.

Возникает вопрос, кто  из них высказывает истину, а кто  ложь?

А вот современная перефразировка этого парадокса. Допустим, что на лицевой стороне карточки написаны только слова: «На другой стороне этой карточки написано истинное высказывание». Ясно, что эти слова представляют собой осмысленное утверждение. Перевернув карточку, мы должны либо обнаружить обещанное высказывание, либо его нет. Если оно написано на обороте, то оно является либо истинным, либо нет. Однако на обороте стоят слова: «На другой стороне этой карточки написано ложное высказывание» – и ничего более. Допустим, что утверждение на лицевой стороне истинно. Тогда утверждение на обороте должно быть истинным и, значит, утверждение на лицевой стороне должно быть ложным. Но если утверждение на лицевой стороне ложно, тогда утверждение на обороте также должно быть ложным, и, следовательно, утверждение на лицевой стороне должно быть истинным. В итоге – парадокс. Парадокс «Лжец» произвел громадное впечатление на греков. И легко понять почему. Вопрос, который в нем ставится, с первого взгляда кажется совсем простым: лжет ли тот, кто говорит только то, что он лжет? Но ответ «да» приводит к ответу «нет», и наоборот. И размышление ничуть не проясняет ситуацию. За простотой и даже обыденностью вопроса оно открывает какую-то неясную и неизмеримую глубину. Ходит даже легенда, что некий Филит Косский, отчаявшись разрешить этот парадокс, покончил с собой. Говорят также, что один из известных древнегреческих логиков, Диодор Кронос, уже на склоне лет дал обет не принимать пищу до тех пор, пока не найдет решение «Лжеца», и вскоре умер, так ничего и не добившись. В средние века этот парадокс был отнесен к так называемым неразрешимым предложениям и сделался объектом систематического анализа. В новое время «Лжец» долго не привлекал никакого внимания. В нем не видели никаких, даже малозначительных затруднений, касающихся употребления языка. И только в наше, так называемое новейшее время развитие логики достигло, наконец, уровня, когда проблемы, стоящие, как представляется, за этим парадоксом, стало возможным формулировать уже в строгих терминах. Теперь «Лжец» – этот типичный бывший софизм – нередко именуется королем логических парадоксов. Ему посвящена обширная научная литература. И, тем не менее, как и в случае многих других парадоксов, остается не вполне ясным, какие именно проблемы скрываются за ним и как следует избавляться от него.

                             Парадокс «крокодил и мать»

В Древней Греции пользовался  большой популярностью рассказ  о крокодиле и матери, совпадающий  по своему логическому содержанию с  парадоксом «Протагор и Еватл». Крокодил выхватил у египтянки, стоявшей на берегу реки, ее ребенка. На ее мольбу вернуть ребенка крокодил, пролив, как всегда, крокодилову слезу, ответил.

- Твое счастье трогало меня, и я дам тебе шанс получить назад ребенка. Угадай, отдам я его тебе или нет. Если ответишь правильно, я верну ребенка. Если не угадаешь, я его не отдам.

Подумав, мать ответила:

– Ты не отдашь мне ребенка.

– Ты его не получишь, – заключил крокодил. – Ты сказала либо правду, либо неправду. Если то, что я не отдам  ребенка, – правда, я не отдам его, так как иначе сказанное не будет правдой. Если сказанное – неправда, значит, ты не угадала, и я не отдам ребенка по уговору.Однако матери это рассуждение не показалось убедительным.– Но ведь если я сказала правду, то ты отдашь мне ребенка, как мы и договорились. Если же я не угадала, что ты не отдашь ребенка, то ты должен мне его отдать, иначе сказанное мною не будет неправдой. Кто прав: мать или крокодил? К чему обязывает крокодила данное им обещание? К тому, чтобы отдать ребенка или, напротив, чтобы не отдать его? И к тому и к другому одновременно. Это обещание внутренне противоречиво, и, таким образом, оно не выполнимо в силу законов логики. Миссионер очутился у людоедов и попал как раз к обеду. Они разрешают ему выбрать, в каком виде его съедят. Для этого он должен произнести какое-нибудь высказывание с условием, что, если это высказывание окажется истинным, они его сварят, а если оно окажется ложным, его зажарят. Что следует сказать миссионеру? Разумеется, он должен сказать: «Вы зажарите меня». Если его действительно зажарят, окажется, что он высказал истину, и значит, его надо сварить. Если же его сварят, его высказывание будет ложным, и его следует как раз зажарить. Выхода у людоедов не будет: из «зажарить» вытекает «сварить», и наоборот. Этот эпизод с хитрым миссионером является, конечно, еще одной из перефразировок спора Протагора и Еватла. У знаменитого софиста Протагора, жившего в V в. до нашей эры, был ученик по имени Еватл, обучавшийся праву. По заключенному между ними договору Еватл должен был заплатить за обучение лишь в том случае, если выиграет свой первый судебный процесс. Если же он этот процесс проиграет, то вообще не обязан платить. Однако, закончив обучение, Еватл не стал участвовать в процессах. Это длилось довольно долго, терпение учителя иссякло, и он подал на своего ученика в суд. Таким образом, для Еватла это был первый процесс. Свое требование Протагор обосновал так:– Каким бы ни было решение суда, Еватл должен будет заплатить мне. Он либо выиграет этот свой первый процесс, либо проиграет. Если выиграет, то заплатит в силу нашего договора. Если проиграет, то заплатит согласно этому решению. Судя по всему, Еватл был способным учеником, поскольку он ответил Протагору:– Действительно, я либо выиграю процесс, либо проиграю его. Если выиграю, решение суда освободит меня от обязанности платить. Если решение суда будет не в мою пользу, значит, я проиграл свой первый процесс и не заплачу в силу нашего договора. Озадаченный таким оборотом дела, Протагор посвятил этому спору с Еватлом особое сочинение «Тяжба о плате». К сожалению, оно, как и большая часть написанного Протагором, не дошло до нас. Тем не менее, нужно отдать должное Протагору, сразу почувствовавшему за простым судебным казусом проблему, заслуживающую специального исследования. Г. Лейбниц, сам юрист по образованию, также отнесся к этому спору всерьез. В своей докторской диссертации «Исследование о запутанных казусах в праве» он пытался доказать, что все случаи, даже самые запутанные, подобно тяжбе Протагора и Еватла, должны находить правильное разрешение на основе здравого смысла. По мысли Лейбница, суд должен отказать Протагору за несвоевременностью предъявления иска, но оставить, однако, за ним право потребовать уплаты денег Еватлом позже, а именно после первого выигранного им процесса. Было предложено много других решений данного парадокса. Ссылались, в частности, на то, что решение суда должно иметь большую силу, чем частная договоренность двух лиц. На это можно ответить, что не будь этой договоренности, какой бы незначительной она ни казалась, не было бы ни суда, ни его решения. Ведь суд должен вынести свое решение именно по ее поводу и на ее основе. Обращались также к общему принципу, что всякий труд, а значит, и труд Протагора, должен быть оплачен. Но ведь известно, что этот принцип всегда имел исключения, тем более в рабовладельческом обществе. К тому же он просто неприложим к конкретной ситуации спора: ведь Протагор, гарантируя высокий уровень обучения, сам отказывался принимать плату в случае неудачи своего ученика в первом процессе. Иногда рассуждают так. И Протагор и Еватл – оба правы частично, и ни один из них в целом. Каждый из них учитывает только половину возможностей, выгодную для себя. Полное или всестороннее рассмотрение открывает четыре возможности, из которых только половина выгодна для одного из спорящих. Какая из этих возможностей реализуется, это решит не логика, а жизнь. Если приговор судей будет иметь большую силу, чем договор, Еватл должен будет платить, только если проиграет процесс, т.е. в силу решения суда. Если же частная договоренность будет ставится выше, чем решение судей, то Протагор получит плату только в случае проигрыша процесса Еватлу, т.е. в силу договора с Протагором. Эта апелляция к жизни окончательно все запутывает. Чем, если не логикой, могут руководствоваться судьи в условиях, когда все относящиеся к делу обстоятельства совершенно ясны? И что это будет за руководство, если Протагор, претендующий на оплату через суд, добьется ее, лишь проиграв процесс? Впрочем, и решение Лейбница, кажущееся вначале убедительным, немного лучше, чем неясное противопоставление логики и жизни. В сущности, Лейбниц предлагает задним числом заменить формулировку договора и оговорить, что первым с участием Еватла судебным процессом, исход которого решит вопрос об оплате, не должен быть суд по иску Протагора. Мысль эта глубокая, но не имеющая отношения к конкретному суду. Если бы в исходной договоренности была такая оговорка, нужды в судебном разбирательстве вообще не возникло бы. Если под решениемданного затруднения понимать ответ на вопрос, должен Еватл уплатить Протагору или нет, то все эти, как и все другие мыслимые решения, являются, конечно, несостоятельными. Они представляют собой не более чем уход от существа спора, являются, так сказать, софистическими уловками и хитростями в безвыходной и неразрешимой ситуации. Ибо ни здравый смысл, ни какие-то общие принципы, касающиеся социальных отношений, не способны разрешить спор. Невозможно выполнить вместе договор в его первоначальной форме и решение суда, каким бы последнее ни было. Для доказательства этого достаточно простых средств логики. С помощью этих же средств можно также показать, что договор, несмотря на его вполне невинный внешний вид, внутренне противоречив. Он требует реализации логически невозможного положения: Еватл должен одновременно и уплатить за обучение, и вместе с тем не платить.

                                    Парадокс Санчо Пансы

Один старый, известный еще в  Древней Греции парадокс обыгрывается в «Дон Кихоте» М. Сервантеса. Санчо Панса сделался губернатором острова Баратария и вершит суд. Первым к нему является какой-то приезжий и говорит: – Сеньор, некое поместье делится на две половины многоводной рекой… Так вот, через эту реку переброшен мост, и тут же с краю стоит виселица и находится нечто вроде суда, в коем обыкновенно заседает четверо судей, и судят они на основании закона, изданного владельцем реки, моста и всего поместья, каковой закон составлен таким образом: «Всякий проходящий по мосту через сию реку долженствует объявить под присягою: куда и зачем он идет, и кто скажет правду, тех пропускать, а кто солжет, тех без всякого снисхождения отправлять на находящуюся тут же виселицу и казнить». С того времени, когда этот закон во всей своей строгости был обнародован, многие успели пройти через мост, и как скоро судьи удовлетворялись, что прохожие говорят правду, то пропускали их. Но вот однажды некий человек, приведенный к присяге, поклялся и сказал: он-де клянется, что пришел за тем, чтобы его вздернули вот на эту самую виселицу, и ни за чем другим. Клятва сия привела судей в недоумение, и они сказали: «Если позволить этому человеку беспрепятственно следовать дальше, то это будет означать, что он нарушил клятву и согласно закону повинен смерти; если же мы его повесим, то ведь он клялся, что пришел только за тем, чтобы его вздернули на эту виселицу, следовательно, клятва его, выходит, не ложна, и на основании того же самого закона надлежит пропустить его». И вот я вас спрашиваю, сеньор губернатор, что делать судьям с этим человеком, ибо они до сих пор недоумевают и колеблются…Санчо предложил, пожалуй, не без хитрости: ту половину человека, которая сказала правду, пусть пропустят, а ту, которая соврала, пусть повесят, и таким образом правила перехода через мост будут соблюдены по всей форме. Этот отрывок интересен в нескольких отношениях.

Прежде всего, он является наглядной иллюстрацией того, что  с описанным в парадоксе безвыходным  положением вполне может столкнуться  – и не в чистой теории, а на практике – если не реальный человек, то хотя бы литературный герой. Выход, предложенный Санчо Панса, не был, конечно, решением парадокса. Но это было как раз, то решение, к которому только и оставалось прибегнуть в его положении. Когда-то Александр Македонский вместо того, чтобы развязывать хитрый гордиев узел, чего еще никому не удалось сделать, просто разрубил его. Подобным же образом поступил и Санчо. Пытаться решить головоломку на ее собственных условиях, было бесполезно – она попросту неразрешима. Оставалось отбросить эти условия и ввести свое. И еще один момент. Сервантес этим эпизодом явно осуждает непомерно формальный, пронизанный духом схоластической логики масштаб средневековой справедливости. Но какими распространенными в его время – а это было около четырехсот лет назад – были сведения из области логики! Не только самому Сервантесу известен данный парадокс. Писатель находит возможным приписать своему герою, безграмотному крестьянину, способность понять, что перед ним неразрешимая задача!

Информация о работе Парадоксы Логики