Автор работы: Пользователь скрыл имя, 12 Марта 2012 в 21:29, курсовая работа
Тема «Многогранники» одна из основных в традиционном курсе школьной геометрии. Они составляют, можно сказать, центральный предмет стереометрии. Изучение параллельных и перпендикулярных прямых и плоскостей, двугранных углов и другое, так же как введение векторов и координат,- все это только начала стереометрии, подготовка средств для исследования ее более содержательных объектов – главным образом тел и поверхностей.
Введение 2
Глава1. Изучение темы «Многогранники» в школьном курсе стереометрии 4-6
§1. Изучение темы в учебнике Атанасяна Л.С. 7-11
§2. Изучение темы в учебнике Смирновой И.М. 12-14
§3. Изучение темы в учебнике Александрова А.Д. 15-16
Глава2. Виды и роль наглядных средств при изучении многогранников 17-21
Глава3. Опорные задачи при изучении темы «Многогранники» 22
§1. Задачи по теме «Призма» 22-23
§2. Задачи по теме «Пирамида» 24
Литература 25
Призма А1 А2… Аn В1 В2 …Вn определяется как многогранник, составленный из двух равных многоугольников А1 А2… Аn и В1 В2 …Вn , расположенных в параллельных плоскостях, и n-параллелограммов А1 А2 В2 В1, …, Аn А1 В1 Вn. Далее вводятся определения элементов призмы, с помощью моделей разъясняются понятия прямой призмы, наклонной призмы, правильной призмы. Необходимо обратить внимание учащихся на то, что четырехугольная призма – это знакомый им параллелепипед. У произвольного параллелепипеда все шесть граней – параллелограммы, а боковые грани – прямоугольники, у прямоугольного параллелепипеда все шесть граней – прямоугольники. При изучении площади поверхности призмы доказывается теорема о площади боковой поверхности прямой призмы.
Пирамида определяется как многогранник, составленный из n-угольника А1 А2 … Аn и n-треугольников. При введении понятия правильной пирамиды следует акцентировать внимание учащихся на двух моментах: основание пирамиды – правильный многоугольник, и отрезок, соединяющий вершину пирамиды с центром ее основания, является высотой пирамиды. Можно устно доказать, что боковые грани правильной пирамиды – равные равнобедренные треугольники. После этого вводится понятие апофемы правильной пирамиды (высота боковой грани правильной пирамиды, проведенной из ее вершины), при этом нужно подчеркнуть, что этот термин употребляется только для правильной пирамиды, хотя у неправильной пирамиды также могут быть равны высоты боковых граней.
При изучении теоремы о площади боковой поверхности правильной пирамиды полезна символическая запись доказательства. Пусть сторона основания n-угольной пирамиды равна а, апофема равна d, S∆ - площадь боковой грани. Тогда
Sбок=n∙ S∆, Sбок=n∙ad, Sбок=(n∙a)∙d, Sбок= Pd, где P – периметр основания пирамиды.
Далее вводится понятие усеченной пирамиды. Плоскость, параллельная основанию пирамиды, разбивает ее на два многогранника: один из них является пирамидой, а другой называется усеченной пирамидой. Усеченная пирамида – это часть полной пирамиды, заключенная между ее основанием и секущей плоскостью, параллельной основанию данной пирамиды. При выполнении рисунков к задачам на усеченную пирамиду удобно вначале начертить полную пирамиду, а затем выделить усеченную пирамиду.
При введении понятия правильной усеченной пирамиды надо отметить, что ее основания – правильные многоугольники, а боковые грани – равные равнобедренные трапеции; высоты этих трапеций называются апофемами усеченной пирамиды. Также выводится формула площади боковой поверхности правильной усеченной пирамиды.
Последнее, что изучается в теме «Многогранники» в учебнике , это симметрия в пространстве и понятие правильного многогранника. Основными понятиями здесь являются понятия симметричных точек относительно точки, прямой, плоскости; понятия центра, оси, плоскости симметрии фигуры. При введении понятия правильного многогранника нужно подчеркнуть два условия, входящие в определение: а) все грани такого многогранника – равные правильные многоугольники; б) в каждой вершине многогранника сходится одно и то же число ребер. В учебнике доказано, что существует пять видов правильных многогранников и не существует правильного многогранника, гранями которого являются правильные n-угольники при n ≥ 6. Целесообразно предложить учащимся изготовить дома модели правильных многогранников. Для этой цели надо использовать развертки, изображенные в учебнике.
Таким образом, в данном учебнике многогранники изучаются с опорой на наглядность, предметы окружающей действительности.
Весь теоретический материал темы относится либо к прямым призмам, либо к правильным призмам и правильным пирамидам. Все теоремы доказываются достаточно просто, результаты могут быть записаны формулами, поэтому в теме много задач вычислительного характера, при решении которых отрабатываются умения учащихся пользоваться сведениями из тригонометрии, формулами площадей, решать задачи с использованием таких понятий, как «угол между прямой и плоскостью», «двугранный угол» и др.
§2.Учебник Смирновой И.М.
Данный учебник предназначен для преподавания геометрии 10-11 классах гуманитарного профиля. По сравнению с традиционным изложением в учебнике несколько сокращен теоретический материал, больше внимания уделяется вопросам исторического, мировоззренческого и прикладного характера.
Как и в, особенностью учебника является раннее введение пространственных фигур, в том числе многогранников, в п.3 «Основные пространственные фигуры». Цель – сформировать представления учащихся об основных понятиях стереометрии, ознакомить с пространственными фигурами и моделированием многогранников. Вводиться понятие многогранника как пространственной фигуры, поверхность которой состоит из конечного числа многоугольников, называемых гранями многогранника. Стороны этих многоугольников называются ребрами многогранника, а вершины многоугольников – вершинами многогранника.
Учащимся демонстрируются следующие многогранники:
- куб – многогранник, поверхность которого состоит из шести квадратов;
- параллелепипед – многогранник, поверхность которого состоит из шести параллелограммов;
- прямоугольный параллелепипед – параллелепипед, у которого грани – прямоугольники;
- призма – многогранник, поверхность которого состоит из двух равных многоугольников, называемых основаниями призмы, и параллелограммов, называемых боковыми гранями (причем у каждого параллелограмма два противоположных ребра лежат на основаниях призмы);
- прямая призма – призма, боковые грани которой - прямоугольники; правильная призма – прямая призма, основаниями которой являются правильные многоугольники;
- пирамида – многогранник, поверхность которого состоит из многоугольника, называемого основанием пирамиды, и треугольников с общей вершиной, называемых боковыми гранями пирамиды;
- правильная пирамида – пирамида, в основании которой правильный многоугольник, и все боковые ребра равны.
Показываются более сложные многогранники, в том числе правильные, полуправильные и звездчатые многогранники. Рассматривается несколько способов изготовления моделей многогранников из разверток и геометрического конструктора. Моделирование многогранников служит важным фактором развития пространственных представлений учащихся.
Таким образом, к началу непосредственного изучения темы «Многогранники» учащиеся уже знакомы (на доступном для них уровне ) с традиционным материалом по этой теме. Появляется возможность расширить представления учащихся о многогранниках, рассмотрев с ними более подробно правильные, полуправильные и звездчатые многогранники.
Основная цель данного раздела – ознакомить учащихся с понятием выпуклости и свойствами выпуклых многогранников, рассмотреть теорему Эйлера и ее приложения к решению задач, сформировать представления о правильных, полуправильных и звездчатых многогранниках.
Можно привести примерное тематическое планирование данной темы.
Пункт учебника | Содержание | Кол-во часов |
18 | Выпуклые многогранники | 2 |
19 | Теорема Эйлера | 2 |
20* | Приложения теоремы Эйлера | 2 |
21 | Правильные многогранники | 2 |
22* | Топологически правильные многогранники | 1 |
23 | Полуправильные многогранники | 2 |
23 | Звездчатые многогранники | 1 |
Среди пространственных фигур особое значение имеют выпуклые фигуры и, в частности, выпуклые многогранники. Данное понятие в учебнике вводится следующим образом: многогранник называется выпуклым, если он является выпуклой фигурой, т.е. вместе с любыми двумя своими точками целиком содержит и соединяющий их отрезок. Далее рассматриваются свойства выпуклых многогранников.
После изучения выпуклых многогранников рассматривается теорема Эйлера и ее приложения. В качестве таких приложений рассматриваются задача о трех домиках и трех колодцах, проблема четырех красок, вводится понятие графа.
Выпуклый многогранник называется правильным, если его гранями являются равные правильные многоугольники, и в каждой вершине сходится одинаковое число граней. Выпуклый многогранник называется полуправильным, если его гранями являются правильные многоугольники (возможно, и с разным числом сторон), причем в каждой вершине сходится одинаковое число граней. Рассматриваются пять видов правильных многогранников, некоторые виды полуправильных и четыре звездчатых многогранника.
При изучении правильных, полуправильных и звездчатых многогранников следует использовать модели этих многогранников, изготовление которых описано в учебнике, а также графические компьютерные средства.
§3.Учебник Александрова А.Д.
Данный учебник предназначен для классов и школ с математической специализацией, он дает богатую математическую информацию, развивает ученика, но является достаточно трудно усваиваемым. В учебнике рассматриваются такие темы, которые в основной школе не доступны даже для «сильных» учеников, например, сферическая геометрия.
Отметим особенности изучения многогранников в данном учебнике. Во-первых, многогранники изучаются после круглых тел. Во-вторых, при изучении многогранника и его элементов прослеживается связь с многоугольником. Вследствие чего возможны две последовательности изложения темы: 1) обобщить понятие многоугольника, затем разобрать аналогичные вопросы в пространстве; 2) пользуясь §21 учебника, дать сначала определение многогранника, далее обобщить понятие многоугольника. Особенностью является введение двух определений призмы (как в учебниках, рассмотренных выше, и как цилиндр, в основании которого лежит многоугольник), причем доказывается равносильность этих определений. Аналогично дается другое определение пирамиде: как конус с многоугольником в основании. Пункт 23.6 содержит раздел о триангулировании многогранника, и в нем дается другое, конструктивное определение многогранника. §24 «Выпуклые многогранники» впервые излагается в столь серьезном виде, рассматривается вопрос равносильности двух определений выпуклого многогранника. Изложение темы «Правильные многогранники» также отличается от ее изложения в учебниках по геометрии других авторских коллективов: сначала показываются пять типов правильных многогранников, построением доказывается, что все пять типов правильных многогранников существуют, и только после этого доказывается, что других правильных выпуклых многогранников быть не может. Обычно же после определения сразу доказывалась теорема, а существование показывалось позже, что усложняло методику рассказа.
Таким образом, учебник содержит очень богатый теоретический материал по многогранникам, которого нет в других учебниках по геометрии, также он может быть использован как учебник для дополнительного изучения в основной школе. Ниже в таблице приведено примерное поурочное планирование материала.
№ урока | Содержание учебного материала |
1-2 | Обобщение понятие многоугольника. Многогранник. |
3-5 | Призма, параллелепипед. Упражнения. |
6-10 | Пирамида. Виды пирамид. Упражнения. |
11-13 | Выпуклые многогранники. |
14-16 | Теорема Эйлера. Развертка выпуклого многогранника. |
17-19 | Правильные многогранники. |