Методы решения нелинейных уравнений

Автор работы: Пользователь скрыл имя, 20 Ноября 2011 в 18:23, курсовая работа

Описание работы

В курсовой работе рассматриваются вопросы интерполяции с применением формулы Ньютона. В работе предложены программы вычисления значения функции в заданной точке, а также вычисления значения нелинейного уравнения методом секущих написанных на языке программирования Turbo С 2.0.

Содержание работы

Введение
1. Метод решения нелинейного уравнения методом секущих
1.1. Общая характеристика методов решения нелинейных уравнений
1.2. Метод секущих
1.3. Тестовый пример
1.4. Разработка алгоритма решения нелинейных уравнений
2. Вычисление значения функции при помощи интерполяционной формулы
2.1. Общая характеристика методов интерполяционной функции
2.2. Интерполяционная формула Ньютона
2.3. Тестовый пример
2.4. Разработка алгоритма и программы вычисления функции
Заключение
Список литературы
Приложение 1.1
Приложение 2.1

Файлы: 1 файл

referat.doc

— 421.50 Кб (Скачать файл)

  Проведем  касательную к графику функции в точке b1 (x1; f (x1)).Найдем абсциссу x2 точки с2 пересечения касательной с осью Ox :

  x2 = x1 – (f (x1)/( f ’(x1))

Вообще :

  xk+1=x k – (f(x k)/f ’(x k)) (3)

  Таким образом, формула (3) дает последовательные приближения (xk) корня, получаемые из уравнения касательной , проведенной к графику функции в точке b k(x k;f(x k0) метод уточнения корня c [a;b] уравнения f(x) = 0 с помощью формулы (3) называется методом касательной или методом Ньютона.

  Геометрический  смысл метода касательных состоит  в замене дуги y = f (x) касательной, одной к одной из крайних точек . Начальное приближение x0 = a или x0 = b брать таким, чтобы вся последовательность приближения х k принадлежала интервалу ]a;b[ . В случае существования производных f ’, f ”, сохраняющих свои знаки в интервале, за х0 берется тот конец отрезка [a;b], для которого выполняется условие f ’(х0) * f (х0) > 0. Для оценки приближения используется общая формула :

  |c-x k-1 | ? | f (x k+1)/m| , где m = minf’(x) на отрезке [a;b] .

  На  практике проще пользоваться другим правилом :

  Если  на отрезке [a;b] выполняется условие 0 < m < | f (x)| и e - заданная точность решения, то неравенство | x k+1-x k| ? e влечет выполнение неравенства |c-x k-1| ? e .

  В этом случае процесс последовательного  приближения продолжают до тех пор, пока не выполнится неравенство :|c-x k-1| ? e .

  Упрощенный  метод Ньютона:   , n=0,1,…

  Метод секущих:  , n=0,1,… 

  1.3. Тестовый пример                             

  Для заданного нелинейного уравнения вида f(x)=0 графическим или аналитическим способом найти интервалы локализации корней, 5x-3x-5=0

  1. 5x-3x-5=0;   y=5x       y=3x-5

   5x=3x+5  x -2 -1 0 1 2  x -2 2

                           0,04 0,2 1 5 25  y -1 11 

  1. графический метод

Первое  решение находится в интервале (-2;-1). Второе в интервале (1;2)

б) метод  секущих

          1) (-2;-1)

          f(x)=5x-3x-5

    f(-2)=5-2+6-5=1/25+1=26/25=1.04>0

    f(-1)=5-1+3-5=1/5-2=-1.8<0

    x1=a-(b-a)f(a)/f(b)-f(a)=-2-(-1+2)*1.04/-1.8-1.04=-1/6338<0

    f(-1.6338)=5-1.6338+3*1.6338-5=-0.0265<0

      применим метод к промежутку (-2;-1.6338)

                x2=-2-(-1.6429+2)*1.04/(-0.0002-1.04)=-1.64297

                f(-1.64297)=5-1.6338+3*1.64297-5=-0.00003

                искомый корень: -1.6429 

          2) (-2;-1)

    f(1)=51-3-5=-3<0

    f(2)=52-3*2-5=25-11=14>0

    x1=a-(b-a)f(a)/f(b)-f(a)=1-(2-1)*(-3)/-14+3=1+3/17=1.1765

    f(1.1765)=51.1765+3*1.1765-5=-1.8869<0

          (1.1765;2) 

    x2=a-(b-a)f(a)/f(b)-f(a)=1.1765-(2-1.1765)*(-1.8869)/-14+-1.8869=1.2743

    f(1. 2743)=-1.04795<0

          (1.2743;2)

    x3=a-(b-a)f(a)/f(b)-f(a)=1.2743-(2-1.2743)*(-1.04795)/-14+-1.04795=1.3248

    f(1. 3248)=-0.5411<0

          (1.3248;2)

    x4=a-(b-a)f(a)/f(b)-f(a)=1.3248-(2-1.3248)*(-0.5411)/-14+=-0.5411=1.3499

    f(1. 3499)=-0.2688<0

          (1.3499;2)

    x5=a-(b-a)f(a)/f(b)-f(a)=1.3499-(2-1.3499)*(-0.2688)/-14+-0.2688=1.3621

    f(1. 3621)=-0.1313<0

          (1.3621;2)

    x6=a-(b-a)f(a)/f(b)-f(a)=1.3621-(2-1.3621)*(-0.1313)/-14+-0.1313=1.3680

    f(1. 3680)=-0.0635<0

          (1.3680;2)

    x7=a-(b-a)f(a)/f(b)-f(a)=1.3680-(2-1.3680)*(-0.0635)/-14+-0.0635=1.3709

    f(1. 3709)=-0.0299<0

          (1.3709;2)

    x8=a-(b-a)f(a)/f(b)-f(a)=1.3709-(2-1.3709)*(-0.0299)/-14+-0.0299=1.3722

    f(1. 3722)=-0.0148<0

          (1.3722;2)

    x9=a-(b-a)f(a)/f(b)-f(a)=1.3722-(2-1.3722)*(-0.0148)/-14+-0.0148=1. 3729

    f(1. 3729)=-0.0067<0

          (1.3729;2)

    x10=a-(b-a)f(a)/f(b)-f(a)=1.3729-(2-1.3729)*(-0.0067)/-14+-0.0067=1.3732

    f(1. 3732)=-0.0032<0

          (1.3732;2)

    x11=a-(b-a)f(a)/f(b)-f(a)=1.3732-(2-1.3732)*(-0.0032)/-14+-0.0032=1.3733

    f(1. 3733) =-0.00199<0

          (1.3733;2)

    x12=a-(b-a)f(a)/f(b)-f(a)=1.3733-(2-1.3733)*(-0.00199)/-14+-0.00199=1.3734

    f(1. 3734)=-0.0008<0

          (1.3734;2)

    x13=a-(b-a)f(a)/f(b)-f(a)=1.3734-(2-1.3734)*(-0.0008)/-14+-0.0008=1.37344

    f(1. 37344)= -0.0004<0

          (1.37344;2)

    x14=a-(b-a)f(a)/f(b)-f(a)=1.37344-(2-1.37344)*(-0.0004)/-14+-0.0004=1.3735

    f(1. 3735)=-0.0003<0

          (1.3735;2)

    x15=a-(b-a)f(a)/f(b)-f(a)=1.3735-(2-1.3735)*(-0.0003)/-14+-0.0003=1.37347

    f(1. 37347)=-0.000001<0

          (1.37347;2)

          искомый корень: 1.3734

1.4 Разработка алгоритма решения нелинейных уравнений в приложении 1.1 
 
 
 
 
 
 
 

Глава 2. Вычисление значения функции при помощи интерполяционной формулы

2.1 Общая характеристика  методов интерполяционной  формулы

     Основные  направления исследования: разрешимость задачи интерполирования, простейших интерполяционных формул, применение интерполяции для построения приближенных интерполяционных формул, применение интерполяции для построения приближенных и численных методов решения различных задач математики и ее приложений.

      Приближенное  представление функций. Интерпояционные функции на отрезке по значениям ее в узлах сетка - означает постоение другой функции такой, что В более общей постановке задача интерполирования функции состоит в постоении не только из условий совпадения значений функций и на стеке , но и совпадения в отдельных узлах производных до какого-то порядка или некоторых других соотношений, связанных и .

      Обычно  стоится в виде

,

где - некоторая заранее выбранная система линейно независимых функций. Такое интерполирование называется л и н е й н ы м относительно системы , а интерполяционным многочленом по системе .

      Выбор системы  определяется свойством класса функций, для приближения которого предназначаются интерполяционные формулы. Например, для приближения - периодической функции на   за  естественно взять тригонометрическую систему функций, для приближения на полу оси ограниченных или возрастающих функции- систему рациональных или показательных функций, учитывающих поведение приближаемых функций на бесконечности и т.д.

      Чаще  всего используя а л г е  б р а и ч е с к о  е  интерполирование: . Существует ряд явных представлений алгебраических интерполяционных многочленов. Например интерполяционный многочлен Лагранжа имеет вид:

      В задаче приближения функции и  на всём отрезке  алгебраическое интерполирование высокого порядка выполняется сравнительно редко. Алгебраический интерполяционный процесс не является сходящимся в классе непрерывных на функций. Обычно ограничиваются линейным интерполированием по узлам и на каждом отрезке или квадратичным по трем узлам , , на отрезке .

      Эффективным аппаратом приближения функции  являются интерполяционные сплайны, но их построение в ряде частных случаях требует значительных вычислительных затрат.

      Полиномиальный  интерполяционный  сплайн произвольной степени m дефекта r определяется как функция , удовлетворяющая, кроме условий и , еще дополнительно условиям совпадения в узлах сетки значений функции и интерполированной функции и их производных до некоторого порядка.

      Часто при обработке эмпирических данных коэффициенты в определяют исходя из требования минимизации суммы

- заданные числа,  .

      Такое построение функции называют интерполированием  по методу наименьших квадратов.

      Интерполирование  функций многих переменных имеет  ряд принципиальных и алгебраических трудностей. Например в случае алгебраической интерполяции интерполяционный многочлен  Лагранжа фиксированной степени, вообще говоря, не существует для произвольной схемы различных узлов интерполяции. В частности для функций двух переменных такой многочлен суммарной степени не выше n может быть построен по узлам лишь при условии, что эти узлы не лежат на алгебраической кривой порядка n.

      Другой  поход к интерполированию функции  многих переменных стоит в том, что сначала интерполируется функция по переменной при фиксированных потом по следующей переменной при фиксированных и т.д. интерполяционные сплайны для функций многих переменных определяются по многомерной сетке при соответствующих изменениях по аналогии с одномерным случаем.

      Интерполирование функций и численные методы. Интерполирование функции используется:

  1. для замены сложно вычисляемой функции другой, вычисляемой проще
  2. для приближенного восстановления функции на всей области задания по значениям её в отдельных точках или по другим известным величинам
  3. для получения сглаживающих функций
  4. для приближенного нахождения предельных значений функции
  5. в задачах ускорения сходимости последовательностей и рядов и в других вопросах.

     Общие идеи построения интерполяционных методов  решения уравнения  =0 и систем уравнения , одни и те же. Трудности задачи интерполирования функций многих преременных особенно  сказывается при исследовании и практическом использовании такого рода методов для большого числа уравнений. В основу получении интерполяционных методов решения уравнения =0 положена замена функции ее интерполяционным многочленом и последующим решением уравнения =0 берутся за приближенные решении уравнения =0 интерполяционный многочлен используется так же при построении итерационных методов решения уравнения =0.

      Например  взяв за корень линейного интерполяционного алгебраического многочлена, построенного по значениям и в узле  или по значениям и в узлах и , приходят соответственно к методу Ньютона и метода секущих

Информация о работе Методы решения нелинейных уравнений