Автор работы: Пользователь скрыл имя, 16 Июня 2013 в 18:23, контрольная работа
Сигналы от измерительных датчиков и любых других источников информации передаются по линиям связи к приемникам - измерительным приборам, в измерительно-вычислительные системы регистрации и обработки данных, в любые другие центры накопления и хранения данных. Как правило, информационные сигналы являются низкочастотными и ограниченными по ширине спектра. Каналы связи, напротив, являются высокочастотными, широкополосными и рассчитаны на передачу сигналов от множества источников одновременно с частотным разделением каналов. Перенос спектра сигналов из низкочастотной области в выделенную для их передачи область высоких частот выполняется операцией модуляции.
Введение.
1. Амплитудная модуляция. Однотональная модуляция. Энергия однотонального АМ-сигнала. Многотональный модулирующий сигнал. Демодуляция АМ-сигналов. Балансная амплитудная модуляция. Однополосная амплитудная модуляция. Полярная модуляция.
2. Сигналы с угловой модуляцией. Фазовая модуляция (ФМ). Частотная модуляция (ЧМ). Однотональная угловая модуляция. Спектры сигналов с угловой модуляцией. Сигналы с многотональной угловой модуляцией. Демодуляция УМ – сигналов. Квадратурная модуляция. Пример моделирования квадратурной модуляции в системе Mathcad. Демодуляция квадратурного сигнала.
3. Внутриимпульсная частотная модуляция. ЛЧМ-сигналы. Спектр прямоугольного ЛЧМ-сигнала.
4. Импульсно-модулированные сигналы. Амплитудно-импульсная модуляция. Широтно-импульсная модуляция. Временная импульсная модуляция. Кодово-импульсная модуляция.
5. Модуляция символьных и кодовых данных. Амплитудно-манипулированные сигналы. Угловая манипуляция.
Литература.
СИГНАЛЫ и ЛИНЕЙНЫЕ СИСТЕМЫ
Тема 15. МОДУЛИРОВАННЫЕ СИГНАЛЫ
Мир создан ради богов и людей.
Хрисипп. Греческий философ, стоик, III в.д.н.э.
Все создается с какой-то целью. Придется разобраться, для чего же созданы модулированные сигналы. И почему на них не обратили внимание ни древние греки, ни Михайло Васильевич Ломоносов.
Евгений Прокопчук. Иркутский геофизик Уральской школы, казак, ХХ в.
Содержание
Введение.
1. Амплитудная модуляция. Однотон
2. Сигналы с угловой модуляцией. Фазовая модуляция (ФМ). Частотная модуляция (ЧМ). Однотональная угловая модуляция. Спектры сигналов с угловой модуляцией. Сигналы с многотональной угловой модуляцией. Демодуляция УМ – сигналов. Квадратурная модуляция. Пример моделирования квадратурной модуляции в системе Mathcad. Демодуляция квадратурного сигнала.
3. Внутриимпульсная частотная модуляция. ЛЧМ-сигналы. Спектр прямоугольного ЛЧМ-сигнала.
4. Импульсно-модулированные
5. Модуляция символьных и кодовых данных. Амплитудно-манипулированные сигналы. Угловая манипуляция.
Литература.
Введение
Сигналы от измерительных датчиков и любых других источников информации передаются по линиям связи к приемникам - измерительным приборам, в измерительно-вычислительные системы регистрации и обработки данных, в любые другие центры накопления и хранения данных. Как правило, информационные сигналы являются низкочастотными и ограниченными по ширине спектра. Каналы связи, напротив, являются высокочастотными, широкополосными и рассчитаны на передачу сигналов от множества источников одновременно с частотным разделением каналов. Перенос спектра сигналов из низкочастотной области в выделенную для их передачи область высоких частот выполняется операцией модуляции.
Допустим, что низкочастотный сигнал, подлежащий передаче по каналу связи, задается функцией s(t). В канале связи для передачи данного сигнала выделяется определенный диапазон высоких частот. На входе канала связи в специальном передающем устройстве формируется вспомогательный, как правило, непрерывный во времени периодический высокочастотный сигнал u(t) = f(t; a1, a2, … am). Совокупность параметров ai определяет форму вспомогательного сигнала. Значения параметров ai в отсутствие модуляции являются величинами постоянными. Если на один из этих параметров перенести сигнал s(t), т.е. сделать его значение пропорционально зависимым от значения s(t) во времени (или по любой другой независимой переменной), то форма сигнала u(t) приобретает новое свойство. Она несет информацию, тождественную информации в сигнале s(t). Поэтому сигнал u(t) называют несущим сигналом, несущим колебанием или просто несущей (carrier), а процесс переноса информации на параметры несущего сигнала – его модуляцией (modulation). Информационный сигнал s(t) называют модулирующим (modulating signal), результат модуляции – модулированным сигналом (modulated signal). Обратную операцию выделения модулирующего сигнала из модулированного колебания называют демодуляцией (demodulation).
Основным видом несущих сигналов являются гармонические колебания:
u(t) = U×cos(wt+j),
которые имеют три свободных параметра: U, w и j. В зависимости от того, на какой из данных параметров переносится информация, различают амплитудную (АМ), частотную (ЧМ) или фазовую (ФМ) модуляцию несущего сигнала. Частотная и фазовая модуляция взаимосвязаны, поскольку изменяют аргумент функции косинуса, и их обычно объединяют под общим названием - угловая модуляция (angle modulation). В каналах передачи цифровой информации получила также распространение квадратурная модуляция, при которой одновременно изменяются амплитуда и фаза несущих колебаний.
При использовании в качестве несущих
сигналов периодических
В качестве несущих сигналов можно использовать не только периодические колебания, но и стационарные случайные процессы. В качестве модулируемых параметров случайных сигналов используются моменты случайных процессов. Так, например, модуляция второго момента случайных последовательностей (модуляция по мощности) представляет собой аналогию амплитудной модуляции.
15.1. Амплитудная модуляция [1,25].
Амплитудная модуляция (amplitude modulation, АМ) была первым видом модуляции, освоенным на практике. В настоящее время АМ применяется в основном только для радиовещания на низких частотах (не выше коротких волн) и для передачи изображения в телевизионном вещании. Это обусловлено низким КПД использования энергии модулированных сигналов.
АМ соответствует переносу информации s(t) Þ U(t) при постоянных значениях параметров несущей частоты w и фазы j. АМ – сигнал представляет собой произведение информационной огибающей U(t) и гармонического колебания ее заполнения. Форма записи амплитудно-модулированного сигнала:
u(t) = U(t)×cos(wot+jo),
U(t) = Um×[1+M×s(t)],
где Um – постоянная амплитуда несущего колебания при отсутствии модулирующего сигнала s(t), М – коэффициент амплитудной модуляции.
Значение М характеризует глуби
Рис. 15.1.1. Модулированный сигнал.
Рис. 15.1.3. Перемодуляция сигнала
На рис. 15.1.2 приведен пример глубокой модуляции, при которой значение M стремится к 1. Стопроцентная модуляция (М=1) может приводить к искажениям сигналов при перегрузках передатчика, если он имеет ограниченный динамический диапазон по амплитуде несущих частот или ограниченную мощность передатчика (увеличение амплитуды несущих колебаний в пиковых интервалах сигнала U(t) в два раза требует увеличения мощности передатчика в четыре раза).
При М>1 возникает так называемая перемодуляция, пример которой приведен на рис. 15.1.3. Форма огибающей при перемодуляции искажается относительно формы модулирующего сигнала, и после демодуляции, если применяются ее простейшие методы, информация может быть искажена.
Однотональная модуляция. Простейшая форма модулированного сигнала создается при модуляции несущего сигнала гармоническим колебанием с одной частотой W:
u(t) = Um[1+M×cos Wt]×cos wot.
Значения начальных фазовых углов несущего и модулирующего колебания для упрощения выражений будем принимать равными нулю, если они не имеет принципиального значения. С учетом формулы cos(x)×cos(y) = (1/2)[cos(x+y)+cos(x-y)], из выражения (15.1.3) получаем:
u(t) = Um cos wot + (UmM/2) cos[(wo+W)t] + (UmM/2) cos[(wo-W)t]. (15.1.4)
Рис. 15.1.4. Физические спектры сигналов.
Отсюда следует, что модулирующее колебание с частотой W перемещается в область частоты wo и расщепляется на два колебания, симметричные относительно частоты wo, с частотами соответственно (wo+W) - верхняя боковая частота, и (wo-W) - нижняя боковая частота (рис. 15.1.4 для сигнала, приведенного на рис. 15.1.1). Амплитуды колебаний на боковых частотах равны друг другу, и при 100%-ной модуляции равны половине амплитуды колебаний несущей частоты. Если получить уравнение (15.1.4) с учетом начальных фаз несущей и модулирующей частоты, то правило изменения фаз аналогично изменению частоты: начальная фаза модулирующего колебания для верхней боковой частоты складывается с начальной фазой несущей, для нижней – вычитаются из фазы несущей. Физическая ширина спектра модулированного сигнала в два раза больше ширины спектра сигнала модуляции.
Энергия однотонального АМ-сигнала. Обозначим раздельными индексами (нес- несущая, вб- верхняя боковая, нб- нижняя боковая) составляющие колебания в левой части выражения (15.1.4) однотонального АМ-сигнала и определим функцию его мгновенной мощности:
u(t) = uнес(t) + uвб(t) + uнб(t).
p(t)= u2нес(t)+u2вб(t)+u2нб(t)+2uнес
Для определения средней мощности сигнала выполним усреднение функции p(t):
Pu =
Все взаимные мощности модулированного сигнала при усреднении становятся равными нулю (спектры не перекрываются), при этом:
Pu = Рнес + Рвб + Рнб = Um2/2 + (UmM)2/4. (15.1.6)
Доля мощности боковых частот в единицах мощности несущей частоты:
(Рвб + Рнб)/Рнес
= М2/2,
т.е. не превышает 50% даже при 100%-ной модуляции.
Под полезной мощностью модулированных сигналов понимают мощность боковых частот, несущих информацию. Коэффициент полезного действия модуляции определяется отношением мощности боковых частот к общей мощности модулированного сигнала:
hАМ = (Um2 M2/4) /Pu = M2/(М2+2). (15.1.8)
Рис. 15.1.5.
Как можно видеть на рис. 15.1.5, даже при М=1 КПД амплитудной модуляции составляет только 33%, а при практическом использовании обычно меньше 20%.
Для модулированных сигналов применяют также понятие пиковой мощности Pmax. Значение пиковой мощности для однотонального АМ-сигнала:
Pmax = Um2 (1+M)2.
Многотональный модулирующий сигнал имеет произвольный спектральный состав. Математическая модель такого сигнала может быть аппроксимирована тригонометрической суммой гармонических составляющих, в пределе бесконечной:
s(t, n) =
an cos(Wnt+Fn),
где значения амплитуд an и начальных фаз Fn упорядоченной возрастающей последовательности гармоник Wn произвольны. Подставляя (15.1.9) в (15.1.2) и заменяя произведения M·an парциальными (частичными) коэффициентами модуляции Mn = M·an, получим обобщенное уравнение амплитудно-модулированного сигнала и его физического спектра:
u(t) = Um[1+ Мncos(Wnt+Fn)]×cos wot. (15.1.10)
u(t)=Umcos wot+(Um/2)
Рис. 15.1.6. Многотональная модуляция.
На рис. 15.1.6 приведен схематический пример амплитудных спектров модулирующего и АМ-сигналов при многотональной модуляции. Он также содержит полосы верхних и нижних боковых частот относительно несущей частоты wo, являющихся прямой и зеркальной масштабными копиями модулирующего сигнала. Полная ширина спектра АМ-сигнала равна удвоенной ширине спектра модулирующего сигнала.
Пример. Частотный диапазон одного километра каротажного кабеля 0-200 кГц. Частотный диапазон измерительных датчиков скважинного прибора 0-5 кГц. От какого количества датчиков одновременно может передаваться информация по данному каротажному кабелю?
Минимальная несущая частота должна быть на порядок выше максимальной частоты модулирующего сигнала, т.е. порядка 50 кГц. Для передачи сигнала от одного датчика потребуется полоса частот 2×5 = 10 кГц плюс пустой защитный интервал для исключения перекрестных помех порядка 1 кГц, т.е. 11 кГц. Общее количество каналов передачи информации: (200-50-5)/11 = 13 каналов.
В соответствии огибающей модулированного сигнала форме модулирующего сообщения нетрудно убедиться вычислением модуля аналитического сигнала z(t) = u(t) + (см. тему "Аналитические сигналы").
При u(t) = Um[1+ Мn·s(t, n)] cos wo(t), квадратурное дополнение сигнала определяется преобразованием Гильберта и равно = Um[1+ Мn·s(t, n)] sin wo(t). Огибающая сигнала:
|z(t)| =
Автокорреляционная функция АМ-сигналов:
Bu(t) = u(t) u(t-t) dt. (15.1.12)
Постоянная фаза сигнала не влияет на форму АКФ. При u(t)=U(t)·cos wot получаем:
cos wot · cos wo(t-t) = 0.5 cos wot + 0.5 cos wo(2t-t).
Bu(t) = U(t)U(t-t) dt + 0.5 U(t)U(t-t) cos wo(2t-t) dt. (15.1.13)
Второй интеграл в формуле АКФ существенно меньше первого (произведение медленно меняющейся функции U(t)U(t-t) и сильно осциллирующего члена с частотой 2wo) и им можно пренебречь. Первый интеграл представляет собой АКФ сигнала U(t). Отсюда:
Рис. 15.1.7.
Bu(t) @ BU(t). (15.1.14)
Полная энергия сигнала за счет усреднения по высокочастотным колебаниям:
Bu(0) @ (1/2) BU(0).
При бесконечной энергии сигнала:
Bu(t) = . (15.1.15)
На рис. 15.1.7 приведена типичная форма автокорреляционных функций однотонального модулированного сигнала при М=1 и Um=1.