Автор работы: Пользователь скрыл имя, 20 Июня 2013 в 08:36, курсовая работа
Статистика рассматривается как наука о методах изучения массовых явлений. Некоторые процессы, наблюдаемые в массовом количестве, обнаруживают определенные закономерности, которые, однако, невозможно заметить в отдельном случае или же при небольшом числе наблюдений. Явления, которые в случае событий массового характера отличаются определенной закономерностью, однако не обнаруживаются на основе единичного наблюдения, называются массовыми явлениями. Сама такая закономерность называется статистической закономерностью.
ВВЕДЕНИЕ 6
1 Измерение в статистических исследованиях 11
1.1 Типы взаимосвязей. Корреляционный анализ 11
1.2 Расчет коэффициента парной корреляции и его статистическая проверка 14
1.3 О ложной корреляции (влияние «третьего фактора») 15
1.4 Измерение степени тесноты связи между качественными признаками (ранговая корреляция) 16
2 Прогнозирование в статистических исследованях 18
2.1 Регрессионный анализ данных 19
2.2 Множественная регрессия 24
2.3 Проблемы множественной регрессии 26
3 Практическая часть 29
3.1 Уравнение множественной регрессии 29
3.2 Предпосылки МНК 29
3.3 Оценка уравнения регрессии 30
3.4 Матрица парных коэффициентов корреляции 34
3.4.1 Модель регрессии в стандартном масштабе 37
3.5 Анализ параметров уравнения регрессии 39
3.5.1 Показатели тесноты связи факторов с результатом 42
3.5.2 Частные коэффициенты эластичности 42
3.5.3 Стандартизированные частные коэффициенты регрессии 42
3.5.4 Частные коэффициенты корреляции 43
3.5.5 Индекс множественной корреляции (множественный коэффициент корреляции) 44
3.5.6 Коэффициент детерминации 45
3.6 Оценка значения результативного признака при заданных знчениях факторов 45
3.7 Проверка гипотез относительно коэффициентов уравнения регрессии (проверка значимости параметров) 46
3.8 Проверка общего качества уравнения множественной регресии 47
3.9 Решение задачи с использованием программы (язык С++) 48
ЗАКЛЮЧЕНИЕ 55
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 56
Вместо использования
Для того чтобы показать процесс
измерения и прогнозирования, мной
был проведен опрос среди интернет-
Прогнозируемая переменная (Y) – время пребывания в сети Интернет. Измерялось в часах. Количество наблюдений (n) – 80.
X1 – количество свободного времени в день.
X2 – возраст пользователя. Минимальное значение переменной X2 – 16 лет.
Т.е. надо было выявить есть ли связь между этими переменными. Если есть, то можно ли с помощью этого прогнозировать значение переменной Y.
Уравнение множественной регрессии может быть представлено в виде:
Y = f(β , X) + ε, (29)
где X = X(X1, X2, ..., Xm) - вектор независимых (объясняющих) переменных;
β - вектор параметров (подлежащих определению);
ε - случайная ошибка (отклонение);
Y - зависимая (объясняемая) переменная.
Теоретическое линейное уравнение множественной регрессии имеет вид:
Y = β0 + β1X1 + β2X2 + ... + βmXm + ε (30)
β0 - свободный член, определяющий значение Y, в случае, когда все объясняющие переменные Xj равны 0.
Прежде чем перейти к определению нахождения оценок коэффициентов регрессии, необходимо проверить ряд предпосылок МНК.
Эмпирическое уравнение
множественной регрессии
Y = b0 + b1X1 + b1X1 + ... + bmXm + e (31)
Здесь b0, b1, ..., bm - оценки теоретических значений β0, β1, β2, ..., βm коэффициентов регрессии (эмпирические коэффициенты регрессии); e - оценка отклонения ε.
При выполнении предпосылок МНК относительно ошибок εi, оценки
b0, b1, ..., bm параметров β0, β1, β2, ..., βm множественной линейной регрессии по МНК являются несмещенными, эффективными и состоятельными (т.е. BLUE-оценками).
Для оценки параметров уравнения
множественной регрессии
Определим вектор оценок коэффициентов регрессии. Согласно методу наименьших квадратов, вектор s получается из выражения:
s = (XTX)-1XTY (32)
Таблица 4 - Матрица Х
1 |
2 |
20 |
1 |
3 |
30 |
1 |
5 |
40 |
1 |
2 |
19 |
1 |
4 |
36 |
1 |
3 |
28 |
1 |
4 |
35 |
1 |
8 |
54 |
1 |
5 |
41 |
1 |
4 |
34 |
1 |
7 |
48 |
1 |
6 |
45 |
1 |
6 |
47 |
1 |
7 |
50 |
1 |
6 |
36 |
1 |
3 |
18 |
1 |
4 |
21 |
1 |
3 |
17 |
1 |
7 |
41 |
1 |
5 |
28 |
1 |
6 |
33 |
1 |
8 |
49 |
1 |
4 |
23 |
1 |
7 |
40 |
1 |
6 |
32 |
1 |
8 |
46 |
1 |
3 |
16 |
1 |
7 |
32 |
1 |
4 |
16 |
1 |
5 |
21 |
1 |
6 |
27 |
1 |
7 |
33 |
1 |
4 |
19 |
1 |
6 |
30 |
1 |
8 |
42 |
1 |
5 |
26 |
1 |
4 |
20 |
1 |
6 |
29 |
1 |
3 |
16 |
1 |
7 |
34 |
1 |
9 |
47 |
1 |
8 |
40 |
1 |
5 |
17 |
1 |
6 |
22 |
1 |
8 |
32 |
1 |
9 |
36 |
1 |
7 |
29 |
1 |
5 |
19 |
1 |
6 |
24 |
1 |
7 |
28 |
1 |
8 |
33 |
1 |
9 |
40 |
1 |
6 |
23 |
1 |
5 |
18 |
1 |
9 |
41 |
1 |
5 |
18 |
1 |
6 |
17 |
1 |
9 |
29 |
1 |
8 |
25 |
1 |
7 |
22 |
1 |
6 |
17 |
1 |
7 |
21 |
1 |
9 |
30 |
1 |
8 |
26 |
1 |
8 |
19 |
1 |
6 |
16 |
1 |
7 |
16 |
1 |
8 |
20 |
1 |
7 |
19 |
1 |
8 |
21 |
1 |
8 |
22 |
1 |
7 |
17 |
1 |
8 |
16 |
1 |
7 |
17 |
1 |
9 |
18 |
1 |
10 |
21 |
1 |
9 |
20 |
1 |
8 |
16 |
1 |
9 |
18 |
1 |
10 |
19 |
Таблица 5 - Матица Y
1 |
|
… |
}12 стр. |
1 |
|
2 |
|
… |
}11 стр. |
2 |
|
3 |
|
… |
}13 стр. |
3 |
|
4 |
|
… |
}11 стр. |
4 |
|
5 |
|
… |
}7 стр. |
5 |
|
6 |
|
… |
}6 стр. |
6 |
|
7 |
|
… |
}3 стр. |
7 |
|
8 |
|
8 |
|
8 |
Таблица 6 - Матрица XT
Умножаем матрицы, (XTX) (табл. 6, 4).
В матрице, (XTX) число 80, лежащее на пересечении 1-й строки и 1-го столбца, получено как сумма произведений элементов 1-й строки матрицы XT и 1-го столбца матрицы X.
Умножаем матрицы, (XTY) (табл. 6, 5).
Находим обратную матрицу (XTX)-1
Таблица 6 – Матрица (XTX)-1
0.19 |
-0.0177 |
-0.00245 |
-0.0177 |
0.00349 |
-0.000162 |
-0.00245 |
-0.000162 |
0.000126 |
Вектор оценок коэффициентов регрессии равен
s = y(x) (33)
Уравнение регрессии:
Y = 2.59 + 0.82X1-0.15X2
Уравнение регрессии получено.
Число наблюдений n = 80. Число независимых переменных в модели равно 2, а число регрессоров с учетом единичного вектора равно числу неизвестных коэффициентов. С учетом признака Y, размерность матрицы становится равным 4. Матрица, независимых переменных Х имеет размерность (80 х 4). Матрица ХTХ определяется непосредственным умножением или по следующим предварительно вычисленным суммам.
Таблица 7 - Матрица составленная из Y и X
1 |
1 |
2 |
20 |
1 |
1 |
3 |
30 |
1 |
1 |
5 |
40 |
1 |
1 |
2 |
19 |
1 |
1 |
4 |
36 |
1 |
1 |
3 |
28 |
1 |
1 |
4 |
35 |
1 |
1 |
8 |
54 |
1 |
1 |
5 |
41 |
1 |
1 |
4 |
34 |
1 |
1 |
7 |
48 |
1 |
1 |
6 |
45 |
1 |
1 |
6 |
47 |
1 |
1 |
7 |
50 |
1 |
2 |
6 |
36 |
1 |
2 |
3 |
18 |
1 |
2 |
4 |
21 |
1 |
2 |
3 |
17 |
1 |
2 |
7 |
41 |
1 |
2 |
5 |
28 |
1 |
2 |
6 |
33 |
1 |
2 |
8 |
49 |
1 |
2 |
4 |
23 |
1 |
2 |
7 |
40 |
1 |
2 |
6 |
32 |
1 |
2 |
8 |
46 |
1 |
2 |
3 |
16 |
1 |
3 |
7 |
32 |
1 |
3 |
4 |
16 |
1 |
3 |
5 |
21 |
1 |
3 |
6 |
27 |
1 |
3 |
7 |
33 |
1 |
3 |
4 |
19 |
1 |
3 |
6 |
30 |
1 |
3 |
8 |
42 |
1 |
3 |
5 |
26 |
1 |
3 |
4 |
20 |
1 |
3 |
6 |
29 |
1 |
3 |
3 |
16 |
1 |
3 |
7 |
34 |
1 |
3 |
9 |
47 |
1 |
3 |
8 |
40 |
1 |
4 |
5 |
17 |
1 |
4 |
6 |
22 |
1 |
4 |
8 |
32 |
1 |
4 |
9 |
36 |
1 |
4 |
7 |
29 |
1 |
4 |
5 |
19 |
1 |
4 |
6 |
24 |
1 |
4 |
7 |
28 |
1 |
4 |
8 |
33 |
1 |
4 |
9 |
40 |
1 |
4 |
6 |
23 |
1 |
4 |
5 |
18 |
1 |
4 |
9 |
41 |
1 |
5 |
5 |
18 |
1 |
5 |
6 |
17 |
1 |
5 |
9 |
29 |
1 |
5 |
8 |
25 |
1 |
5 |
7 |
22 |
1 |
5 |
6 |
17 |
1 |
5 |
7 |
21 |
1 |
5 |
9 |
30 |
1 |
5 |
8 |
26 |
1 |
6 |
8 |
19 |
1 |
6 |
6 |
16 |
1 |
6 |
7 |
16 |
1 |
6 |
8 |
20 |
1 |
6 |
7 |
19 |
1 |
6 |
8 |
21 |
1 |
6 |
8 |
22 |
1 |
6 |
7 |
17 |
1 |
7 |
8 |
16 |
1 |
7 |
7 |
17 |
1 |
7 |
9 |
18 |
1 |
7 |
10 |
21 |
1 |
7 |
9 |
20 |
1 |
8 |
8 |
16 |
1 |
8 |
9 |
18 |
1 |
8 |
10 |
19 |
Таблица 8 - Транспонированная матрица
Таблица 9 - Матрица ATA
80 |
289 |
509 |
2221 |
289 |
1359 |
2029 |
7064 |
509 |
2029 |
3543 |
14525 |
2221 |
7064 |
14525 |
70135 |
Полученная матрица имеет следующее соответствие:
Таблица 10 – Таблица соответствия
∑n |
∑y |
∑x1 |
∑x2 |
∑y |
∑y2 |
∑x1 y |
∑x2 y |
∑x1 |
∑yx1 |
∑x1 2 |
∑x2 x1 |
∑x2 |
∑yx2 |
∑x1 x2 |
∑x2 2 |
Найдем парные коэффициенты корреляции.
Таблица 11 - Таблица расчетов
Признаки x и y |
∑xi |
∑yi |
∑xiyi |
|||
Для y и x1 |
509 |
6.36 |
289 |
3.61 |
2029 |
25.36 |
Для y и x2 |
2221 |
27.76 |
289 |
3.61 |
7064 |
88.3 |
Для x1 и x2 |
2221 |
27.76 |
509 |
6.36 |
14525 |
181.56 |
Таблица 12 - Таблица расчетов
Признаки x и y |
|||||
Для y и x1 |
3.81 |
3.94 |
1.95 |
1.98 |
0.61 |
Для y и x2 |
105.93 |
3.94 |
10.29 |
1.98 |
-0.59 |
Для x1и x2 |
105.93 |
3.81 |
10.29 |
1.95 |
0.25 |
Информация о работе Измерение и прогнозирование в статистических исследованиях